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Question 1. (a) Define what is meant by a subring of a ring R. [3]

(b) Define what is meant by an ideal of a ring R. [3]

(c) What is meant by a homomorphism from a ring R to a ring S? [3]

(d) What is meant by an isomorphism from a ring R to a ring S? [3]

Question 2. Let S be the subring {[0]4, [2]4} of Z4, and let T be the subring
{[0]6, [3]6} of Z6. [You are not required to prove that these are subrings.]

(a) Is T a ring with identity? Justify your answer. [3]

(b) Is T a field? Justify your answer. [3]

(c) Is Z6 a field? Justify your answer. [3]

(d) Is S an ideal of Z4? Justify your answer. [3]

(e) Give an explicit example of a homomorphism of rings from S to T . [3]

(f) Is there an isomorphism of rings from S to T? Justify your answer. [3]

Question 3. Let X be a set and let P(X) denote the Boolean ring whose
elements are the subsets of X, with addition being symmetric difference and
multiplication being intersection. [You do not have to prove that P(X) is a
ring.]

(a) What is the zero-element of P(X)? [2]

(b) Determine coset representatives for the distinct cosets of the subring
P({2}) in P({1, 2, 3}). [6]

Question 4. Let R be a ring and let I be an ideal of R.

(a) Define what is meant by the factor ring R/I. [You do not need to show
that your definitions of addition and multiplication are well-defined.] [3]

(b) Consider the map θ : R → R/I, defined by rθ = I + r for all r ∈ R.
Prove that θ is a surjective homomorphism of rings, with Ker(θ) = I.
[You may assume, without proof, that R/I is a ring.] [8]

(c) Give, without proof, an ideal J of the ring R[x] of polynomials with
real number coefficients, such that R[x]/J is isomorphic to the field C of
complex numbers. [3]
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Question 5. Let S = {a+ b
√
−5 : a, b ∈ Z}.

(a) Apply a subring test to prove that S is a subring of C. [5]

(b) Explain why S is an integral domain. [3]

(c) Define what is meant by a unit in a ring with identity. [3]

(d) Determine, with justification, the units in S. [5]

(e) Is S a unique factorisation domain? Justify your answer. [6]

Question 6. In this question we consider the ring Q[x] of polynomials with
rational number coefficients. [You may assume, without proof, that Q[x] is an
integral domain.]

(a) Is the ideal 〈2x0, x〉 of Q[x] a principal ideal? Justify your answer. [4]

(b) Is Q[x] a unique factorisation domain? Justify your answer. [4]

(c) Is the factor ring Q[x]/〈x2− 1〉 an integral domain? Justify your answer. [4]

Question 7. (a) Let R be an integral domain. What is meant by a Eu-
clidean function on R, and what does it mean for R to be a Euclidean
domain? [4]

(b) Prove that if R is a Euclidean domain and I is an ideal of R then I = aR
for some a ∈ R (where aR = {ar : r ∈ R}). [10]

End of Paper.
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