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Question 1.

(a) Let G be a group acting on a set Ω, and let α ∈ Ω. What is meant by the orbit
OrbG(α) of α? What is meant by the stabiliser StabG(α) of α? [4]

(b) State the Orbit-Stabiliser Theorem. [4]

(c) Let p be a prime, and let G be a group of order pn for some positive integer
n. Apply the Orbit-Stabiliser Theorem to prove that Z(G) 6= {1} [where
Z(G) = {g ∈ G : xg = gx for all x ∈ G}]. [5]

(d) Let p be a prime. Apply the Fundamental Theorem of Abelian Groups to
determine all the abelian groups of order p3, up to isomorphism. [You do not
need to justify your answer.] [4]

(e) Let p be a prime, and let G be a group of order p3. Prove that either G is
abelian or |Z(G)| = p. [8]

Question 2.

(a) What does it mean to say that a permutation of {1, . . . , n} is even? What is
meant by the symmetric group Sn, what is meant by the alternating group
An, and what is meant by a normal subgroup of a group? [8]

(b) Write down all the normal subgroups of the group S4. [You do not need to
justify your answer.] [4]

(c) Let G be a group, let H be a subgroup of G and let K be a normal subgroup
of G. Apply the First Isomorphism Theorem to prove that

H/(H ∩K) ∼= HK/K.

[You may assume, without proof, that H ∩K is a normal subgroup of H and
that HK is a subgroup of G containing K.] [5]

(d) Let n ≥ 5. Determine, with proof, the normal subgroups of Sn. [You may
assume, without proof, that if n ≥ 5 then An is a simple group and
|An| = |Sn|/2.] [8]
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Question 3. Let G be a group.

(a) Define what is meant by an automorphism of G, and what is meant by an
inner automorphism of G. [4]

(b) Prove that an inner automorphism of a group G really is an automorphism of
G. [6]

(c) Apply Sylow’s theorems on the existence and properties of Sylow
p-subgroups to prove that the symmetric group S5 has a transitive faithful
action on a set of size 6. [7]

(d) Prove that the symmetric group S6 has an automorphism which is not an
inner automorphism. [8]

Question 4.

(a) Let G be a group. Define what is meant by the commutator [g, h] of elements
g, h ∈ G, and what is meant by the commutator subgroup (or derived group)
G′ of G. [4]

(b) State Iwasawa’s Lemma. [4]

(c) Let F be a field, let n > 1, let V = F n, let a be a non-zero vector in V and
let f : V → F be a linear map with af = 0.

(i) Define what is meant by the transvection T (a, f) on V , and what is
meant by the transvection group A(a). Define the group SL(n, F ). [6]

(ii) Explain why A(a) can be considered to be a subset of SL(n, F ).
[You may assume, without proof, that a transvection from V to V is a
linear map. You are not required to prove that A(a) is a subgroup of
SL(n, F ).] [4]

(iii) Let w = (0, 1) ∈ F 2. Prove that if |F | > 3 then A(w) is contained in
the commutator subgroup SL(2, F )′ of SL(2, F ). [7]

End of Paper.
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