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Question 1 Let G be a group and let H and K be subgroups of G.

(a) Prove that H N K is a subgroup of G, and furthermore, that if K is a normal

subgroup of G then H N K is a normal subgroup of H. [5]
(b) Prove thatif H € K and K Z H, then H UK is not a subgroup of G. [5]
(c) Prove that if K is a normal subgroup of G then HK is a subgroup of G con-

taining K. [5]
(d) State the First Isomorphism Theorem (for groups). [4]

(e) Apply the First Isomorphism Theorem to prove that if K is a normal subgroup
of G then
H/(HNK) >~ HK/K.

[6]

Question 2 (a) What is meant by a permutation of {1,... ,n}, what is meant by
an even permutation of {1,...,n}, and what is meant by the alternating group
A,? What does it mean to say that a group G is simple? [8]

(b) Suppose G is a group acting primitively on a set €, and let N be a normal
subgroup of G. Prove that either N acts trivially on Q (that is, N lies in the
kernel of the action), or N acts transitively on Q. [7]

(c) Prove that the alternating group A, is simple, for all n > 5. [You may assume,
without proof, that the group A, acts primitively on {1,...,n}, and that As is
simple.] [10]

Question 3  (a) What is meant by a Sylow p-subgroup of a finite group G? [3]

(b) State all parts of Sylow’s theorems on the existence and properties of Sylow
p-subgroups. [6]

(c) Let G be anon-abelian finite simple group having exactly n Sylow p-subgroups
for some prime p dividing |G|. Prove that |G| divides n!. Further, prove that
|G| divides n!/2. [10]

(d) Prove that there is no simple group of order 300. [6]
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Question 4 Let G be a group.

(a) Define what is meant by an automorphism of G, what is meant by the auto-
morphism group Aut(G) of G, and what is meant by the centre Z(G) of G. [6]

(b) Suppose that G is a group of order p“ for some prime p and some integer
a > 0. Prove that |Z(G)| > 1. [6]

(c) Suppose now that G is a non-trivial finite group, such that the group Aut(G)
(in its natural action on G) acts transitively on the set of non-identity elements
of G.

(1) Prove that each non-identity element of G has the same order p, for some
prime p, and so deduce that G is a group of order p“, for some integer
a>0. (71

(i1) Prove that G is abelian. [6]

Question 5 (a) Let G be a group. Define what is meant by the commutator [g, /]
of elements g,h € G, and what is meant by the commutator subgroup (or
derived group) G' of G. (4]

(b) Let F be afield, letn > 1, let V = F", let a be a non-zero vector in F", and let
f:V — F be alinear map with af = 0.

(i) Define what is meant by the transvection T (a, f) on V, and what is meant

by the transvection group A(a). What is meant by SL(n, F)? [6]
(ii) Explain why A(a) can be considered to be a subset of SL(n, F'), and then
why A(a) is an abelian subgroup of SL(n, F). (8]
(iii) Letw = (0,1) € F2. Prove that if |F| > 3 then A(w) < SL(2,F)". [7]
End of Paper
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