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taken to scan and upload your work. Please try to upload your work well before the
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Question 1 [40 marks].
Consider the adjacency matrix A of a network of size N = 5 given by

A =


0 0 0 0 0
1 0 1 1 0
1 0 0 0 1
0 1 1 0 1
0 0 0 0 0

 .

a) Draw the network. Is the network directed or undirected? (Explain your answer.) [7]

b) How many weakly and how many strongly connected components are there in
the network? Which are the nodes belonging to each one of these components? [4]

c) Is there any in-component in the network? If yes, which are the nodes
belonging to them? [3]

d) Is there any out-component in the network? If yes, which are the nodes
belonging to it? [3]

e) Determine the in-degree sequence {kin
1 , kin

2 , kin
3 , kin

4 , kin
5 } and the out-degree

sequence {kout
1 , kout

2 , kout
3 , kout

4 , kout
5 }. [4]

f) Determine the in-degree distribution Pin(k) and the out-degree distribution
Pout(k). [4]

g) Calculate the N × N matrix d of elements dij ∈N0 ∪ {∞} indicating the shortest
distance of node j from node i. [5]

h) Calculate the eigenvector centrality xi of each node i = 1, 2, . . . , N of the
network with adjacency matrix A defined above.
To this end start from the initial guess x(0) = 1

N 1 where 1 is the N-dimensional
column vector of elements 1i = 1 ∀i = 1, 2 . . . , N. Consider the iteration

x(n) = Ax(n−1),

for n ∈N.
Finally, calculate the eigenvector centrality xi of each node i of the network by
finding the limit

xi = lim
n→∞ x(n)i∑N

j=1 x(n)j

.

[10]
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Question 2 [35 marks]. Consider the following model for a growing simple
network.
We adopt the following notation: N and L indicate respectively the total number of
nodes and links of the network, Air indicates the generic element of the adjacency
matrix A of the network, ki indicates the degree of node i and 〈k〉 indicates the
average degree of the network.
At time t = 1 the network is formed by a n0 = 6 nodes m0 = 6 links.
At every time step t > 1 the network evolves according to the following rules:

- A link (r, s) between a node r and a node s is chosen randomly with uniform
probability

π(r,s) =
Ar,s

L

and is removed from the network.

- A single new node joins the network and is connected to the rest of the network
by m links with m fixed to a time-independent integer constant satisfying
2 < m ≤ 6. Each of these new links connects the new node to a generic node j
chosen with probability

Πj =
k j

〈k〉N .

a) Evaluate Π̃i(t) indicating the expected increase in the number of links of node i
at any given time t and show that it follows the preferential attachment rule. [8]

b) What is the total number of links in the network at time t? What is the total
number of nodes? [2]

c) What is the average degree 〈k〉 of the network at time t? What is the average
degree in the limit t → ∞? [6]

d) Use the result at point a) to derive the time evolution ki = ki(t) of the average
degree ki of a node i for t� 1 in the mean-field, continuous approximation. [6]

e) Show that the degree distribution derived in the mean-field approximation is
power-law in the limit of large network sizes. [6]

f) Indicate with γ the power-law exponent of the degree distribution found in the
mean-field approximation. Derive the dependence of γ on m. [3]

g) For which values of m is the network scale-free? [4]

End of Paper.
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