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Question 1 (17 marks) Let {Xt}t=1,2,... be a time series such that

Xt = mt + Yt,

where mt denotes a polynomial trend of degree k and Yt denotes a zero-mean weakly
stationary process.

(a) Define the operator ∇ and explain how it can be used to remove the trend
from the time series {Xt}. [3]

(b) Show that ∇2Xt is a weakly stationary process when the trend is quadratic
and give its autocovariance function in terms of the process Yt. [8]

(c) Explain what is meant by the convolution operation on the linear filters {aj}
and {bk}. Show that the operator ∇2 is a convolution of two filters of the form
(−1, 1). [6]

Question 2 (17 marks) Consider the MA(q) process for a time series {Xt} given
by

Xt = Zt + θ1Zt−1 + . . . + θqZt−q,

where {Zt} ∼ WN(0, σ2).

(a) Give the definition of a causal process. [2]

(b) By expressing this time series in the form of a linear process, show that its
autocovariance function is

γ(τ) =

{
σ2 ∑q−|τ |

j=0 θjθj+|τ | if |τ | ≤ q,

0 if |τ | > q.

What is the corresponding autocorrelation function? [12]

(c) Explain why this MA(q) process is a weakly stationary series. [3]

Question 3 (25 marks) Let the ARMA(1, 2) process for a time series {Xt} be
given by

Xt − 0.9Xt−1 = Zt + 0.3Zt−1 − 0.4Zt−2,

where {Zt} ∼ WN(0, σ2).

(a) Write down the operator form of this process. Show that it is invertible. [8]

(b) Obtain the linear process form of this time series. [12]

(c) State the difference equations for the autocovariance function of this ARMA(1, 2)
process. How does this function behave for the process? [5]
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Question 4 (24 marks) Consider an AR(2) process of the form

Xt = 0.9Xt−1 − 0.2Xt−2 + Zt,

where {Zt} ∼ WN(0, σ2).

(a) Show that there is a stationary solution to this process. [6]

(b) Using the difference equations, obtain the autocorrelation function for this
process. [16]

(c) Give the partial autocorrelation function for this process. [2]

Question 5 (17 marks) Suppose that an ARIMA(p, d, q) model is to be fitted to
some time series data {xt}t=1,...,n.

(a) Describe what important features of the data can be revealed by a time series
plot. [6]

(b) Explain how the orders p, d and q can be identified. [5]

(c) Having fitted an ARIMA(p, d, q) model to the data, what residual diagnostics
should be looked at, and why? [6]
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