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Question 1 (a) Which method gives ciphers that are harder to break: 1) an affine
substitution composed with another affine substitution; 2) a Caesar shift com-
posed with an affine substitution then composed with another Caesar shift.
Justify your answer. [4]

(b) The following cipher text has been encrypted using the affine substitution θ5,4:

QAMMY L JLY EC.

Decrypt it. [6]

(c) How many affine substitutions are there on an alphabet of size 60? How many
Vigenère keys of length 10 are there on this alphabet? [6]

Question 2 (a) Define what a stream cipher on a given alphabet is, explaining all
its ingredients. Explain what the advantages of a one-time pad over a Vigenère
cipher are. [8]

(b) Consider the following two substitution tables on the three letter alphabet
{a,b,c}:

a b c
a a a b
b c b a
c b c c

a b c
a a b c
b b c a
c c a b

Suppose you want to create a secure stream cipher. Which one would you
use? Justify your answer. [3]

(c) Suppose you intercepted the ciphertext

abbccc

and you have reason to believe that it has been encrypted using the left table
in part (b). Suppose you also know that the key is

cabbac

Decrypt the message. [5]

Question 3 (a) Define the Euler function φ(n) and the Carmichael function λ (n).
Evaluate λ (55). [5]

(b) Let n be an odd number such that φ(n) = λ (n). Prove that there is a prime
number p such that n = pr for some integer r ≥ 1. [6]

(c) Show how RSA with modulus N can be broken if λ (N) is known. Illustrate
this by factorizing 589, given that it is a product of two primes and λ (589) =
90. (The marks are for the method, not the factorisation.) [7]
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Question 4 (a) Define what it means for a binary n-bit shift register to be prim-
itive. Give an example of a primitive binary 3-bit shift register. Justify your
answer. [5]

(b) The following is the first 10 digits in the output sequence of a binary 5-bit
shift register:

0011110110.

Determine the rest of the sequence and its period. [8]

(c) Is this shift register primitive? Is the periodic part of the sequence you obtain
in part (b) pseudo-noise? Justify your answers. [5]

Question 5 (a) Explain how the Diffie–Hellman key exchange is implemented in
the RSA cryptosystem. [6]

(b) What is the knapsack problem? What is known about the complexity of the
knapsack problem? [4]

(c) Suppose Alice and Bob are using the knapsack cipher and that Bob’s key is

(22,2,46,5,100,1,702,10,351).

Alice sends the message 1088 to Bob. Decipher it (write your answer in the
form of a binary sequence). [5]

Question 6 (a) Explain the operation of the El-Gamal cipher for encrypting mes-
sages. Which hard problem is it based on? [5]

(b) Why is it important that in Bob’s El-Gamal public key (p,g,h) the number
g is a primitive root mod p? Is (97,8,33) a suitable El-Gamal public key?
Justify your answer. [5]

(c) Bob’s El-Gamal public key is (83,5,52) and his secret key is a = 9. Bob
receives the message (2,40) from Alice. Decipher it, simplifying your answer
as much as possible. [7]

End of Paper
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