Determine the fixed point of the function $f:[0,1]\longrightarrow [0,1]$ defined as

$$f(x) = \begin{cases} x + \frac{2}{3} & 0 \le x < \frac{1}{3} \\ \frac{3}{2} - \frac{3}{2}x & \frac{1}{3} \le x \le 1 \end{cases}.$$

Give your answer in decimal form to 5 decimal places, i.e., 0.12345, with appropriate rounding.

Answer:

QUESTION 2

Not yet answered Marked out of 5.00 🔻 Flag question 🌼

A first-order discrete dynamical system takes on the following states

{3.4, 6.9, 7.3, 5.0, 6.9, ...}

What can be concluded about the system? Select all that apply.

Select one or more:

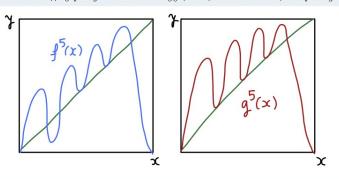
- a. It has a cycle of period 3
- $\hfill \Box$ b. It is a chaotic system in the Devaney sense
- $\ \square$ c. It has a cycle of period 2
- d. It has a fixed point
- $\ \square$ e. It does not have any k-cycles for k < 5

QUESTION 3

Not yet answered Marked out of 6.00 ♥ Flag question ❖

Let $f:\mathbb{R} o\mathbb{R}$ be defined by $f(x)=-x^{51}.$ Fill in the following table:

Diffeomorphism? Order-preserving? Order-reversing?

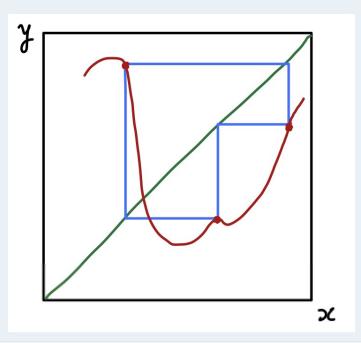

Fixed Points? Prime period 2 points? Prime period k points (k>2)?

Yes No Not applicable Not enough information

QUESTION 4

Not yet answered Marked out of 10.00 🔻 Flag question 🌼

Consider two mappings f and g for which the following graphs are provided for their fifth powers f^5 and g^5


Are f and g topologically conjugate? You may answer yes, no, not enough information, etc. but must provide reasoning for your answer by typing a few brief sentences in the text box below.

Answer:

QUESTION 5

Not yet answered Marked out of 5.00 🔻 Flag question 🌼

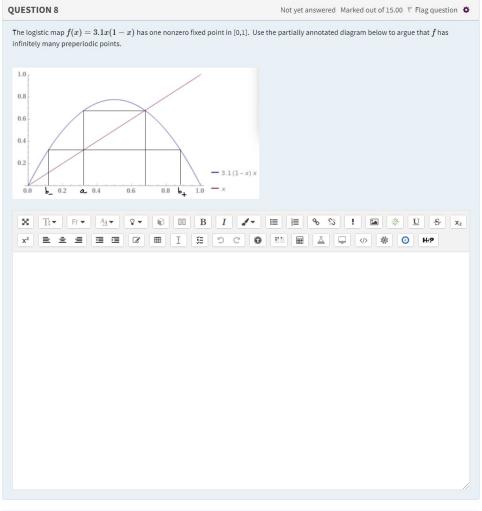
The figure below depits an orbit web for the first 40 iterations of a discrete dynamical system; note that the scale is not given. What specific type of dynamics does the system display? The system exhibits

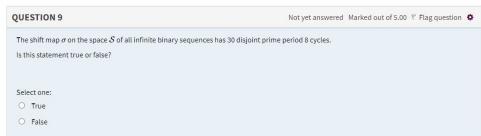
QUESTION 6

Not yet answered Marked out of 5.00 ₹ Flag question 🌣

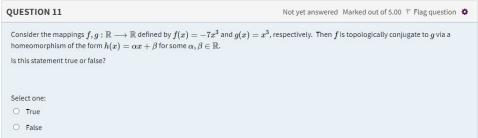
Consider the discrete dynamical system $x_{n+1}=f(x_n)$ where $f(x)=-\frac{1}{2}x^3-\frac{3}{2}x^2+1$. Which of the statements below are correct?

- $\hfill \square$ b. The point $x_0=0$ generates an attracting 2-cycle.
- $\hfill \square$ d. The point $x_0=0$ generates an attracting 3-cycle.
- $\hfill \Box$ e. The point $x_0=0$ is an attracting fixed point.

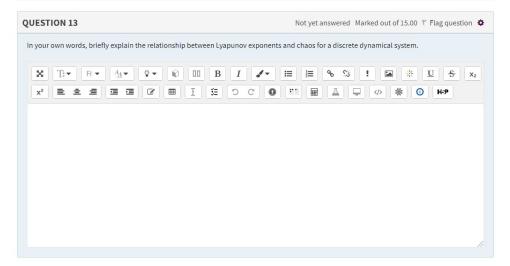

QUESTION 7

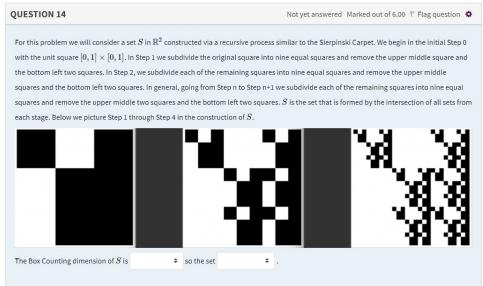

Not yet answered Marked out of 5.00 ♥ Flag question ❖

For a continuous function $f:\mathbb{R}\longrightarrow\mathbb{R}$, which of the following prime period orbits is possible without the other three?


24, 28, 64, 80

Answer:





QUESTION 12 Not yet answered Marked out of 5.00 $\mathbb P$ Flag question \clubsuit Consider the "middle fifths" Cantor set C_5 obtained from the unit interval [0,1] by first removing the middle fifth of the interval [0,1] (the open interval $\left(\frac{2}{5},\frac{3}{5}\right)$), then the middle fifth of each of the two remaining intervals etc. What is the total length of the set remaining at the n^{th} stage? Select one: a. $\frac{4^{n-1}}{5^{n-1}}$ b. $\frac{4^n}{5^n}$ c. c. $\frac{4^{n-1}}{5^{n+1}}$ d. d. $\frac{4^{n-1}}{5^n}$

