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In this paper, we use the following notation.

• Cn denotes the cyclic group of order n.

• Un is the set of integers between 0 and n which are prime to n, with the group operation
being multiplication modulo n.

• D2n is the group with 2n elements

1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s.

The group operation is determined by the relations rn = s2 = 1 and sr = rn−1s.

• Sn denotes the group of all permutations of {1, . . . , n} (with the group operation being
composition).

• If p is a prime, then Z/pZ is the set {0, 1, . . . , p − 1}, with addition and multiplication
modulo p. SL2(Z/pZ) is the group of 2 × 2 matrices with entries in Z/pZ and with
determinant 1, with the group operation being matrix multiplication.

Question 1. [25 marks]
(a) Give the definition of a group. [3]

(b) Prove that the identity element in a group is unique. [4]

(c) Suppose F is a set consisting of five elements a, b, c, d, e, and a binary operation is
defined on F by the following table.

a b c d e
a a b c d e
b b e d a c
c c a e b d
d d c b e a
e e d a c b

Is F a group under this operation? Justify your answer. [5]

Suppose G is a group and g ∈ G.

(d) How are the powers gn defined, for n ∈ Z? Give the definition of the order ord(g) of g. [5]

(e) Suppose ord(g) is even. What is ord(g2)? Justify your answer. [4]

(f) Suppose ord(g) is odd. What is ord(g2)? Justify your answer. [4]

[You may use standard rules for manipulating powers of elements.]
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Question 2. [25 marks] Write an essay on conjugacy, centres and centralisers. [You should
include precise definitions and statements of results, illustrated by examples, and give some proofs.]

Question 3. [25 marks]
(a) Suppose G is a group. Define what it means to say that G is simple. [You do not need to

define what a normal subgroup is.] [2]

Suppose g ∈ Sn.

(b) Explain how to write g in disjoint cycle notation. [3]

(c) Prove that ord(g) is the least common multiple of the lengths of the cycles of g when g
is written in disjoint cycle notation. [4]

(d) Give the definition of a transposition in Sn. Write the permutation (1 6 7)(2 5 3 4) as a
product of transpositions. [5]

(e) Give the definition of the alternating group An. [2]

(f) Prove that any element of An can be written as a product of 3-cycles. [5]

(g) Write down two further results on 3-cycles in An which are used with part (f) to show
that An is simple for n > 5. [4]

Question 4. [25 marks] Suppose G is a group and X is a set.

(a) Define what is meant by an action of G on X. [3]

(b) Give two examples of actions of D8 on itself, one of which is transitive, and the other
not transitive. [You should say clearly how the actions are defined and which one is transitive,
but you do not need to prove anything.] [4]

(c) Suppose π is an action of G on X, and x ∈ X. Define what is meant by the stabiliser of
x, and prove that it is a subgroup of G. [6]

(d) Give a precise statement of the Orbit–Stabiliser Theorem. [3]

Now let p be a prime, and G = SL2(Z/pZ). Let X be the set of non-zero column vectors of
length 2 with entries in Z/pZ, and let G act on X by πg(x) = gx.

(e) By considering the orbit of the vector
(

1
0

)
, prove that this action is transitive. [5]

(f) Hence use the Orbit–Stabiliser Theorem to find |G|. [4]

© Queen Mary University of London (2017) Turn Over



Page 4 MTH6104 / MTH6104P (2017)

Question 5. [25 marks] Suppose G is a group and H is a subgroup of G.

(a) Suppose g ∈ G. Define what is meant by the right coset Hg, and the index of H in G. [4]

(b) Give a precise statement of Lagrange’s Theorem. [3]

(c) Now let K = {1, 9, 25}. Find all the right cosets of K in U28. [You may assume that K is a
subgroup of U28.] [4]

(d) Prove that if H has index 2 in G, then H is a normal subgroup of G. [You may assume that
every element of G lies in exactly one left coset of G, and similarly for right cosets. You may also
assume that if gH = Hg for every g ∈ G, then H is a normal subgroup.] [5]

Now suppose p is a prime number and G is finite.

(e) Give the definition of a Sylow p-subgroup of G. [2]

(f) Give a precise statement of Sylow’s Theorem 1. [3]

(g) Use part (d) and Sylow’s Theorem 1 to show that there is no simple group of order 50. [4]

Question 6. [25 marks] Suppose G and H are groups.

(a) Give the definitions of the following:

• a homomorphism from G to H;

• an isomorphism from G to H;

• an automorphism of G. [6]

(b) Suppose φ : G → H is a homomorphism, let N = ker(φ) and suppose K 6 G. Prove that
φ−1(φ(K)) = NK. [5]

(c) Give a precise statement of the Correspondence Theorem. [3]

(d) Let G = C40. Find all the subgroups of G, and draw a diagram showing which
subgroups contain which others. [You do not need to prove anything.] [3]

(e) Let φ : C40 → C40 be the homomorphism which sends g to g10 for every g ∈ C40. Find
im(φ) and ker(φ), and show how subgroups correspond under the Correspondence
Theorem. [You do not need to prove anything.] [5]

(f) Give an example of an outer automorphism φ of D8 which satisfies φ(r) 6= r. [You do not
have to prove anything, but you should say what φ(g) is for each g ∈ D8.] [3]

End of Paper.
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