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Question 1 [22 marks] The random variable X has probability density function
f(x) = C(2x2 + 1) for 0 < x < 1 and zero otherwise. The random variable Y
conditional on X = x has probability density function

f(y|x) = D
2x2 + y

2x2 + 1
0 < y < 2

and zero otherwise.

(a) Find the values of C and D. [6]

(b) Find the conditional mean of Y given X = x. [3]

(c) Hence find the unconditional mean of Y using the result that E[Y ] = E[E[Y |X]]. [4]

(d) Find the joint probability density function of X and Y . [2]

(e) Find the marginal distribution of Y and hence confirm the value of the mean
found in (c). [5]

(f) Are X and Y independent? Justify your answer. [2]

Question 2 [17 marks]

(a) A biased coin has probability p of landing heads. Assuming tosses are inde-
pendent show that the number of heads, X, before the first tail has probability
mass function P [X = x] = (1− p)px for x = 0, 1, 2, . . . [3]

(b) Show the moment generating function of X is

MX(t) =
1− p

1− pet
.

[4]

(c) Hence find the mean and variance of X. [6]

(d) The coin tossing is repeated independently until n tails have been seen. Find
the moment generating function of the total number of heads. [4]

Question 3 [12 marks] A company’s batteries have a mean lifetime of 10 hours.
To examine the hypothesis that the distribution of lifetimes has an exponential
distribution with mean 10 hours the lifetimes of one hundred batteries were recorded
and are shown below.

Lifetime 0-4 4-8 8-12 12-16 16-20 20+
Number 28 23 16 13 10 10

Carry out a goodness of fit test of the hypothesis using a significance level of
α = 0.05. [12]
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Question 4 [11 marks] In a study to examine different attitudes to healthy eating,
random samples of 647 men and 434 women were selected. Of those sampled 236
men and 195 women said they regularly order a vegetarian meal in a restaurant.

(a) Test the hypothesis that the proportions of men and women who order veg-
etarian meals regularly are the same against an alternative that women are
more likely to order vegetarian meals, use a significance level α = 0.05. [8]

(b) Why would using a contingency table approach to this test cause a problem? [3]

Question 5 [8 marks] The random variables Z1 ∼ N(0, 1), Z2 ∼ N(0, 1), V1 ∼ χ2
n,

V2 ∼ χ2
m are mutually independent. Write down the distributions of the following

(a) Z2
1 + Z2

2 , [2]

(b) Z1
Z2

, [2]

(c) Z1√
V1/n

, [2]

(d) V1/n
V2/m

. [2]

Question 6 [18 marks] Eight patients who suffered from severe insomnia took
part in a study to determine the effects of two sedatives. Each patient took sedative
A for a two week period and the average number of hours sleep were recorded for
each patient. This procedure was then repeated for sedative B. The results were as
follows.

Patient 1 2 3 4 5 6 7 8
Sedative A 2.1 2.9 5.4 3.8 3.1 4.1 2.4 2.9
Sedative B 1.6 2.0 5.2 4.0 3.3 3.2 1.8 2.3

(a) Test the hypothesis that the effect of the two sedatives are the same by finding
the P value. [10]

(b) Find a 95% confidence interval for the difference in average amount of sleep
under the two sedatives. [4]

(c) Comment on the design of this trial noting any good features and any improve-
ments which could be made. [4]

Question 7 [12 marks]

(a) Let X be a continuous random variable, g a non-negative function with domain
the real line and k a positive real number. Prove Markov’s inequality

P (g(X) ≥ k) ≤ E[g(X)]

k
.

[6]

(b) Suppose Y is a continuous random variable taking only non-negative values.
Let the mean of Y be µ and the median of Y be m. Use Markov’s inequality
to prove that m ≤ 2µ. [6]

End of Paper
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