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You may assume any standard properties of the sine, cosine and exponential functions
including the fact that they are continuous.

Question 1. [20 marks]
Let (xn)

∞
n=1 be a sequence of real numbers and x ∈ R.

(a) Define (using quantifier expressions) what it means for (xn)
∞
n=1 to converge to x. [3]

(b) Define (using quantifier expressions) what it means for x to be an accumulation point
of (xn)

∞
n=1. [3]

Now let (xn)
∞
n=1 be the sequence defined by xn = (−1)n

(
1− 1

n

)
.

(c) Prove directly from the definition that (xn)
∞
n=1 does not converge to any real number. [5]

(d) Prove directly from the definition that x = 1 is an accumulation point of (xn)
∞
n=1. [4]

(e) Prove that x = 0.9 is not an accumulation point of (xn)
∞
n=1. [5]

Question 2. [20 marks]
Let α > 3 be a real number. Define the sequence (xn)

∞
n=1 inductively by x1 = α and

xn+1 =
√

α +2xn, ∀n ∈ N.

(a) Prove that the sequence (xn)
∞
n=1 is strictly decreasing. [6]

(b) Prove that the sequence (xn)
∞
n=1 is bounded below by

√
α . [6]

(c) Prove that the sequence (xn)
∞
n=1 converges. [3]

(d) Find, with justification, the limit of (xn)
∞
n=1. [5]

Question 3. [20 marks]

(a) Which of the following series converge? Justify your answers. (You may use any
results from the course provided you state clearly which result you are using.)

(i)
∞

∑
k=1

k3

k5 +3
, (ii)

∞

∑
k=1

3k

5k +3
, (iii)

∞

∑
k=1

cos(1
k )

(−1)k . [12]

(b) Find the value of the series
∞

∑
k=1

xk given by xk =
1+2k

3k . [5]

(c) Let φ : N→ N be a bijection. Is it true or not that
∞

∑
k=1

xφ(k) =
∞

∑
k=1

xk for the series

given in part (b)? Briefly justify your answer. [3]
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Question 4. [20 marks]

(a) Define (using quantifier expressions) what it means to say that a function f : R→ R
is continuous at a point a ∈ R. [3]

(b) Prove directly from the definition that f : R→ R given by f (x) = x2− x
is continuous at all a ∈ R. [7]

(c) Give the negation of your quantifier statement from part (a), i.e. define what it means
for f to not be continuous at a ∈ R. [3]

(d) For β ∈ R, define the function f : R→ R by

f (x) =


0 if x < 0,
β if x = 0,
1 if x > 0.

Prove that for all β ∈ R, f is not continuous at a = 0. [7]

Question 5. [20 marks]
Let f : R→ R be given by f (x) = 5sin4(x)− cos(x).

(a) State the Intermediate Value Theorem. [3]

(b) Prove that the equation f (c) = 0 has a solution c in [0,π]. [5]

(c) Prove that f has a fixed point in [0,π]. [5]

(d) Prove the following statement: for every ε > 0, there exists an open interval
(a,b)⊂ [0,π], such that for all c ∈ (a,b) we have | f (c)3 +3 f (c)+3|< ε . [7]

End of Paper.
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