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Question 1. (a) Find all solutions z ∈ C of the equation (z − i)4 − 81 = 0. [5]

(b) Is the mapping given by z 7→ w = iz2 + 5 a Möbius Transformation? Provide
a definition of Möbius Transformation to justify your answer. What set of
points in the z-plane is mapped by this transformation to the upper half of the
w-plane (=w > 0)? Your answer should include a sketch of the z-plane with
an appropriately shaded region. [5]

(c) Let f = u+ iv be a complex-valued function of a complex variable z = x+ iy.
Write down the Cauchy-Riemann equations satisfied by the real and imaginary
parts u and v of f and state the conditions under which f is guaranteed to be
complex differentiable at z0. [5]

(d) Find the set of points at which the function f(x+ iy) = x2−y2−y+ ix(1−2y)
is differentiable and compute the derivative(s) at those point(s). [5]

Question 2. (a) Find the Taylor series expansion of the function f(z) =
z

2 + 3z
about z0 = 0 and determine the radius of convergence of the series. [6]

(b) Is it possible to give an example of a power series centred at z0 = 0 which is
convergent for all z ∈ R but divergent at all other z ∈ C? Give an example or
explain why this is not possible. [6]

Question 3. Consider the function f(z) =
1

z(z − 3)
.

(a) Find the Laurent series

∞∑
n=0

an(z − 3)n +
∞∑
n=1

bn(z − 3)−n

of f(z) on a punctured disc centred at z0 = 3 and specify the region on which
the series is valid. [6]

(b) What type of singularity does f have at the point z0 = 3? [6]

(c) Determine the residue of f at the point z0 = 3. [6]
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Question 4. (a) Explain what is meant by an isolated singularity of a complex
function f . Give an example of a complex function which has a removable sin-
gularity. Give a second example of a function which has an essential singularity.
Justify your answers, briefly. [6]

(b) Prove the following: If f(z) has a pole of order m at z0 = 0, then g(z) = f(z2)
has a pole of order 2m at z0 = 0. [6]

(c) Determine the singularities of f(z) =
ez − 1

z3
. For each pole determined, state

the order of the pole and calculate its corresponding residue. [6]

Question 5. (a) How many roots (counted with multiplicity) of the polynomial
11z1001 + z7 + 101z3 + 55z2 + 33 lie in the unit disc {z ∈ C : |z| < 1}? Justify
your answer by stating and using Rouché’s Theorem. You do not need to
provide a proof of the theorem. [7]

(b) State Cauchy’s Theorem. [5]

(c) Consider the closed, anticlockwise-oriented curve C = C1 ∪ C2, comprised of
the union of the two paths C1 and C2, given by

C1 is the curve from −i to i along the right half of the circle of radius 1
centred at 0

C2 is the straight line segment from i to −i.

Draw the path given and use Cauchy’s Theorem to calculate∫
C

2 + z

4 + z2
dz.

[6]

Question 6. (a) State the Residue Theorem. [5]

(b) Using the Residue Theorem, or otherwise, evaluate∫
C

2z + 8

(z2 + 9)(z − 1)2
dz,

where C is the positively oriented circle of radius 2 centred at the origin. [9]

End of Paper.
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