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Question 1. Let n ∈ N. Using induction, prove that

(1− x)
n−1

∑
k=0

xk = 1− xn

for any real number x. [12]

Question 2.

(a) Give the definition of a prime number. [4]

(b) Given any natural number n is there a prime number larger than nn? Give
reasons for your answer. You are allowed to quote results proved in the
lectures. [4]

(c) Let n be a natural number. Prove, using the equation in Question 1 or
otherwise, that if 2n−1 is prime, then n is prime. [8]

Question 3. Let A, B, and C be sets.

(a) Explain what is meant for A to be a subset of B. [4]

(b) Show that if A⊆ B, B⊆C and C ⊆ A, then A = B = C. [4]

(c) Is it possible that A ∈ B and A⊆ B? Give reasons for your answer. [4]

Question 4.

(a) Let A and B be sets, and let f : A→ B be a function. Explain what is meant
by saying that f is

(i) injective, (ii) surjective, (iii) bijective. [6]

(b) Is there a bijection from Z to R? Give a brief explanation for your answer. [4]

(c) Let F (N) denote the set of all finite subsets of N and let the function
f : F (N)→ N be given by f (A) = |P(A)|, where P(A) denotes the power
set of A. Is f injective? Is it surjective? Give reasons for your answers. [6]
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Question 5.

(a) State the Binomial Theorem. [4]

(b) Let n be a natural number. Show that n3 is even if and only if n is even. [4]

(c) Prove that 3
√

2 is irrational. [6]

Question 6. Let F : C→ C be a function. A complex number w is said to be a
fixed point of F , if F(w) = w.

(a) Show that 2− i is a fixed point of the function f given by f (z) = z2−3z+5. [4]

(b) Find all fixed points of the function g given by g(z) = z3 + z+8i. [6]

(c) Does every polynomial of degree greater 2 have a fixed point? Give reasons
for your answer. [4]

Question 7. Let n be a natural number greater 1 and let x1,x2, . . . ,xn be real
numbers. Consider the following statement.

If the product x1x2 · · ·xn is zero, then x1 and xn are zero.

(a) Write down the contrapositive. [3]

(b) Write down the converse. [3]

(c) Is the statement true? Is the contrapositive true? Is the converse true? Give
reasons for your answer. [6]

Question 8. Find the flaw in the following proof. [4]

Theorem 1 is the largest natural number.

Proof The proof is by contradiction. Let n be the largest natural number, and
suppose that n > 1. Multiplying both sides of this inequality by n we see that
n2 > n. Thus n2 is a natural number greater than n, contradicting the fact that n is
to be the largest natural number. So the assumption n > 1 is wrong, and we have
shown that n = 1. So 1 is the largest natural number. �

End of Paper.

c© Queen Mary, University of London (2016)


