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Question 1.
(a) Give the definition of a partition of a set X. [3]

(b) Let {A;, As, ...} be a partition of a set X, and R the relation
{(z,y) € X?: there exists j such thatz € A; andy € A; }.

Prove that R is an equivalence relation. [6]

Question 2.
(a) Prove that [65]1ss has a multiplicative inverse in the ring Zse. [6]
(b) Compute this multiplicative inverse. [8]

(c) How many of the elements of Z,5s have multiplicative inverses? Justify your
answer. [6]

Question 3. Let f be the permutation (1 1039 7 4)(2)(5 11 8)(6) in Sy1;, which is
written in cycle notation.

(a) Write f in two-line notation. [3]

(b) Let g be the element
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of Sy1, written in two-line notation. Determine (g f )_1, and write your answer
in cycle notation. [6]
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(¢) Write down an element of S;; of order 21. (4]

Question 4.
(a) State the definition of the complex number el?, where 6 is a real number. [2]
(b) Prove that €'/ - /¢ = €'*9) for all real numbers # and ¢. (4]
(c) Prove by mathematical induction, or otherwise, that for all integers n > 1,

cos(1) + cos(2) 4 -+ cos(n 1) = HHZGZD Sy
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Question 5.
(a) Let R be aring. Prove that —(ab) = (—a) - b for any elements a,b € R.

(b) Let R be a ring, and define the relation | on R so that, if « and b are elements
of R, then a | b if and only if b = ra for some r € R. Must the relation | be
reflexive? symmetric? transitive? Prove your assertions.

Question 6. Let S be the subset of My (C) consisting of matrices of the form

a f
— ﬁ al
(a) Prove that S is closed under addition and multiplication.
(b) Prove that S satisfies the multiplicative inverse law. You may assume that

(é ?) is the multiplicative identity in S.

(c) Prove that S is not a field.

Question 7.
(a) Define what it means for a set G with an operation o to be a group.

(b) Give an example of two finite groups which have the same order but are not
isomorphic.

(c) Let R be a ring with identity. Prove that the set R* of units of R, with the
operation of multiplication, is a group.

End of Paper.
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