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Question1 (a) Give definitions of the terms
(i) relation;
(ii) equivalence relation.

(b) Give an example of an equivalence relation on the set {1,2,3} with
exactly two equivalence classes.

Question 2 (a) Use the Euclidean algorithm to compute gcd(426,330).
(b) Find a solution to the equation

426k + 330¢ = gcd(426,330)

where k and ¢ are integers.

Question 3 Solve the following system of equations over Z;; for x and y.

[4lix+ 7]y =4l
[2]11x+[6]11y = [1]11.

Justify your answer.

Question 4 Let f be the following permutation in Sy, given in two-line
notation.
1234567 8 910
479681510 3 2)

(a) Write f in cycle notation.

(b) Let g € S1o be the element (1)(2 8 6 7)(3 5 4 9)(10), in cycle notation.
Determine fg~!, written in cycle notation.

(c) Determine the order of f.

(d) Specify an integer n such that f" fixes exactly seven elements of the set
{1,2,...,10}.

Question 5 (a) State the definition of the divisibility relation | on the set of
natural numbers.

(b) Prove, using mathematical induction, that
12 | (7" =31 4+2)

for all natural numbers n > 0.
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Question 6 (a) Let R be a set on which two operations + and - are defined.
Define what it means for R to be a ring. [4]

(b) Let Rbe aring. Prove that, if 0 is the additive identity in R, then 0-a =0
for every element a of R. [4]

(c) Give an example of a ring whose set of elements is finite and in which
the commutative law for multiplication does not hold. Justify your
answetr. [6]

Question7 (a) Let G be a group. Define what it means to say that a set H
is a subgroup of G. [3]

(b) Let g and h be elements of a group G. Prove that if gh = hg, then
g h=hg". [6]

(c) Let G be a group, and & an element of G. Prove that
{geG:gh=hg}
is a subgroup of G. [6]

Question 8 Let the operations of addition and multiplication on the set
K={at+bu:a,beR},
where t and u are formal symbols, be defined as follows:

(at+bu)+ (ct+du)=(a+co)t+(b+d)u,
(at +bu) - (ct +du) = (ac +ad + bc — bd)t + (—ac +ad + bc + bd)u.

(a) Compute (%t — %u)2 and express the result in the form at + bu. [3]

(b) Find a multiplicative identity in K, and prove that the multiplication
in K satisfies the identity law. [4]

(c) Specify a bijection f : C — K such that f(a+p) = f(a)+ f(f) and f(ap) =
f(a)f(B) for all complex numbers o and . [6]

[Such a bijection is called an isomorphism of rings.]
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