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Question 1. Let a =

 2
2
−2

, b =

 −1
3
1

 and M =

 4 2 1
−1 6 0
−7 1 −1

.

(a) Determine:

(i) a+b; [3]

(ii) a unit vector in the direction of −a; [3]

(iii) a×b; [3]

(iv) det(M); [3]

(v) M2. [4]

(b) Verify that a is an eigenvector of M and find the corresponding eigenvalue. [4]

Question 2. Consider the following system of linear equations in variables x,y,z.

2x− y+ z = 1
−2x+2y− z = 1

4x+ y+ z = 2


(a) What geometric problem is equivalent to finding the solutions to this system? [3]

(b) Perform the first step (dealing with the x variable) of the Gaussian
elimination algorithm to this system of equations. [5]

(c) Is the system of equations that results from the operations in part (b) in
echelon form? Give a reason for your answer. [3]

(d) Give an example of a system of three linear equations in x,y,z which is not in
echelon form and for which the first step of the Gaussian elimination
algorithm uses a different type of operation from the one followed in part (b).
Indicate what step the algorithm follows in your example. [3]

(e) Define what it means for the n×n matrix A to be invertible. [3]

(f) Describe an alternative method for solving the original system of equations
involving the inverse of a matrix. You should specify the matrix in question
but you do not need to show that it is invertible or calculate its inverse. [3]
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Question 3.

(a) State the Triangle Rule for vector addition. Your answer should express the
sum of two (free) vectors without using coordinates. [4]

(b) Without using coordinates, prove the associative law for vector addition; that
is, for any vectors x,y,z we have (x+y)+ z = x+(y+ z). [Hint: Use the
Triangle Rule.] [6]

Let A,B and C be the points with position vectors

a =

 1
1
1

 , b =

 2
4
1

 , c =

 2
2
3


respectively. Let l be the line which passes through the point A and meets the line
segment BC in its midpoint.

(c) Find a vector equation for l. [5]

(d) Find the distance from the origin to the line l. [5]

Question 4.

(a) For each of the following equations, describe the geometric objects it defines
giving enough detail to completely determine the object. [10]

(i) 2x+3y+4z = 0, (ii) 2x = 3y = 4z, (iii)

∣∣∣∣∣∣
 x

y
z

−
 2

3
4

∣∣∣∣∣∣= 1

(b) Determine equations for x,y (and if appropriate z) which specify the
following sets. [10]

(i) The set of vectors
(

x
y

)
in R2 which are fixed by the linear

transformation of R2 corresponding to the matrix
(
−3/5 4/5

4/5 3/5

)
,

(ii) The set of vectors

 x
y
z

 in R3 which are mapped to 0 by the linear

transformation of R3 corresponding to the matrix

 1 0 −1
0 −1 1
−1 1 0

,

(iii) The set of eigenvectors of the matrix
(

0 1
1 0

)
.
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Question 5.

(a) Define what it means for a function t : Rn→ Rn to be a linear
transformation of Rn. [4]

(b) Determine whether the function f : R3→ R3 given by

f

 x
y
z

=

 2x+ z
0

y−1


is a linear transformation of R3 justifying your answer.

[You may use any properties of linear maps proved in lectures provided that
you state them clearly.] [4]

(c) Let g be a linear transformation of R3 and let M be the corresponding 3×3
matrix. Give an interpretation of the first column of M in terms of the linear
transformation g. [3]

(d) Each of the following functions is a linear transformation. For each one,
determine the corresponding matrix. [9]

(i) a : R3→ R3; a

 x
y
z

=

 z
y+ z

x+ y+ z

 ,

(ii) b : R3→ R3; b(u) = u×

 1
2
3

,

(iii) c : R2→ R2; where c consists of reflection of the plane in the x-axis
followed by reflection of the plane in the y-axis.

End of Paper.
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