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Question 1. Let a =

 1
−2
2

 and b =

 0
3
4

.

Find:

(a) The length of the vector 2a + b; [3]

(b) The distance from the origin to the point with position vector 2a + b; [2]

(c) A unit vector in the direction of a; [3]

(d) The cosine of the angle between a and b; [3]

(e) A non-zero vector orthogonal to a + b; [3]

(f) a× b; [3]

(g) A linear transformation t : R3 → R3 satisfying t(b) = a. [3]

Question 2.

(a) Define precisely what it means for a system of linear equations (which may
contain degenerate equations) to be in echelon form. [5]

(b) Use the method of back substitution to find all solutions to the following system
of linear equations in echelon form: [5]

2x+ y − 2z = 1
y − z = 0

2z = 6


(c) State precisely what your answer to part (b) means regarding the intersection

of a specific collection of planes in 3-space. [4]
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Question 3.

(a) Let Π be a plane with vector equation r · n = d, and let Q be a point with
position vector q. Prove that the distance from Q to Π is [6]

|q · n− d|
|n|

.

(b) Find d so that the distance from the plane with equation x− y+ 2z = d to the
origin is 1. [5]

Question 4.

(a) Define in terms of vectors what it means for the figure ABCD to be a paral-
lelogram. [5]

(b) Let A, B and C be points with position vectors a,b, c respectively, and let D
be the point such that ABCD is a parallelogram. Let U be the midpoint of−−→
AB, V be the midpoint of

−→
AC, and W be the midpoint of

−−→
CD.

Show that U, V,W lie on a straight line and find an equation for that line. [10]

Question 5.

(a) Define what it means for a function t : Rn → Rm to be a linear transformation
(also called a linear map). [4]

(b) Show that if t : R2 → R2 is a linear transformation, then there exists a matrix
A such that t(u) = Au for all u ∈ R2. [6]

(c) For each of the following functions state whether or not it is a linear transfor-
mation. For those that are, give the corresponding matrix. For those that are
not, provide a justification. [9]

(i) f : R3 → R3, f

 x
y
z

 =

 x+ 1
y + 1
z + 1

,

(ii) g : R3 → R3, g

 x
y
z

 =

 2y
3z
x

,

(iii) the rotation of the plane R2 about the origin anticlockwise by angle θ.
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Question 6. Let M be the following 3× 3 matrix: 1 2 0
2 2 1
0 −4 1


(a) Calculate M2. [3]

(b) Calculate Mv when v =

 1
0
−1

. [3]

(c) Find all of the eigenvalues of M . [5]

(d) For each of these eigenvalues find a corresponding eigenvector. [5]

(e) Choose a specific non-zero vector u ∈ R3 and calculate M100u. [5]

[Hint: A judicious choice of u will help considerably.]

End of Paper.
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