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Question 1.

(a) Use the Sandwich Theorem for sequences to find

lim
n→∞

cos n

n
. [7]

(b) Find the sum of the series

∞∑
n=1

(−1)n−1 2

3n−1
.

[7]

(c) Find the Taylor polynomials of orders 0, 1, and 2 for the function

f(x) = sin x,

about the pointx = π/4. [7]

(d) Evaluate

lim
(x,y)→(2,0)
2x−y 6=4

2x− y − 4√
2x− y − 2

.
[7]

(e) Find all first-order and second-order partial derivatives of the function

g(x, y) = y2ex
3

. [7]

(f) Find the unit vector in the direction in whichf(x, y, z) = xey + z2 increases
most rapidly at the point(1, ln 2, 1/2). [7]

(g) Evaluate the triple integral

∫ 1

−1

∫ 2

0

∫ 4

0

(x+ y + z) dy dx dz.
[7]

(h) Solve the differential equation

dy

dx
= (2 + y)e3x, y > −2,

giving the solution in explicit form. [7]

c© Queen Mary, University of London (2016)



MTH4101 (2016) Page 3

Question 2.

(a) State thenth-Term Test for Divergence of infinite series. [4]

(b) Demonstrate the use of the test in part (a) for the series

∞∑
n=1

ln(n+ 1)√
n

and explain what you can, or cannot, conclude. [7]

Question 3.

(a) Use the Chain Rule for partial differentiation to express∂z/∂u and∂z/∂v as
functions ofu andv for

z = 3xey, x = u+ v, y = ln(uv2). [10]

(b) Write a sentence to explain how you could check your result for part (a)
without using the Chain Rule. [1]

Question 4. Consider a circle of radius two centred at the origin. Use themethod
of Lagrange multipliers to find the points on this circle where the function

f(x, y) = 3x− y + 5

has its extreme values. [11]

Question 5.

(a) Solve the systemu = 2x− 3y, v = −x+ y to find expressions forx andy in
terms ofu andv. Use these expressions to find the Jacobian∂(x, y)/∂(u, v). [5]

(b) Consider the integral ∫ ∫
R

(x− y)2 dx dy,

for the regionR bounded by the linesx = −6, x = 0, y = x, andy = x+ 2.
Use the transformation from part (a) to rewrite this as an integral with respect
to u andv and sketch the transformed region of integration in theuv-plane.
[Evaluation of the integral is not required here.] [6]

End of Paper.
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