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Question 1.

(a) Which of the following matrices (if any) are in row echelon form?

01 2 01 101 01
@f{oo1o7), G)|o1 10 2
00 011 00011

(b) Consider the linear system
3rv1 — 6x9 + 323 + 94 = 3
201 — 3x9 + 3x3 + 4dxy = 4
—3ZL’1 + 7562 — 23;3 — 10.774 = -1

(i) Write down the augmented matrix of the system.

(ii) Transform the augmented matrix to row echelon form. Indicate which
elementary row operation you use at each step.

(iii) Identify the leading and the free variables, and write down the solution
set, of the system.

Question 2. Let

a=(1 )

(b) Define what it means for a matrix M to be invertible and what is meant by
the inverse of M.

(a) Calculate A% and A3.

(c) Use your answer to (a) to show that A is invertible.

Question 3. Let

Ne)
o N O O
S = = O
Ut Ot 0 W

(a) Calculate det(A) and decide whether A is invertible or not.

(b) Using (a) evaluate det(A®) and det(34). In each case, briefly explain which
property of determinants you are using.

(c) Find det(B), where B is the matrix obtained from A by subtracting 17 times
column 1 from column 4.
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Question 4.

(a) Which of the following statements (if any) are true? Give detailed reasons for
your answers.

(i) Hy = {(r, s)T| r,s € Rand r —3s =0} is a subspace of R?.
(i) Hy = {AeR™"| A4+ AT =2 } is a subspace of R"*" for any n € N.
(4]

(b) Let vi,...,v, be vectors in a vector space. What does it mean for vy,..., v,
to be linearly independent? [2]

(¢) Show that {(7,0,0,0)7,(2,10,0,0)7,(4,5,3,0)7,(7,0,9,1)7} is a basis of R*. [4]

Question 5.

(a) Define what is a linear transformation. [2]

(b) Let the set P, be the set of all polynomials p(t) of degree n or less, and let
L : Pyy — P be the mapping given by

(L(p))(t) = (1 +2t*)p(3).

Is L a linear transformation? Prove your answer. [4]

(c) Let the mapping M : R? — R! be given by M(x) = \/x? + 23, where x =
(x1,22)T. Is M a linear transformation? Prove your answer. [4]

Question 6. Consider the following vectors in R*:

1 1 )
-1 2 8
ul - 0 9 u2 - 1 9 y = _6
1 1 6

(a) Which of the following sets (if any) are orthogonal? Give reasons for your
answers.

(1) {w,uz}.
(i) {ur, uz,y}.
(4]

(b) Let H = Span (uy,uz). Write y as a sum of a vector in H and a vector in H+. [4]

(c) Determine an orthogonal basis of Span (uj, us,y). [4]
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Question 7. Let

1 1 8
A=1-1 1 and b=1]2
2 1 4

(a) Is the linear system Ax = b consistent? Give reasons.

(b) Determine x € R? that makes ||Ax — b|| as small as possible.

Question 8. Let

3 6 0 -9 -2
A=|-1 =2 0|, vi=|3], vo=1]1
1 4 =2 1 1

(a) Show that vi and vg are eigenvectors of A and find the corresponding eigen-
values.

(b) Find the characteristic polynomial of A and factorise it.
(¢) Determine all eigenvalues of A and find bases for the corresponding eigenspaces.

(d) Is A diagonalisable? If it is, write down a matrix that diagonalises A.

Question 9.

(a) Define what is a symmetric matriz.
(b) Define what is an orthogonal matriz.

(c) State the Spectral Theorem for symmetric matrices.

Question 10.

(a) Define what is the nullspace of a matrix A.
(b) Explain what it means that two matrices A and B commute.

(c) Let A be a square matrix that commutes with its transpose. Show that the
nullspaces of A and AT coincide. [Hint: show that ||Ax]||? = ||ATx]?.]

End of Paper.
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