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Question 1. [31 marks]
Consider the map fr : [0,1]→ [0,1] defined piecewise by:

fr(x) =
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if 0≤ x≤ 1/2
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)
if 1/2 < x≤ 1

where r is a tuning parameter that can take values in the range (0,4].

(a) Show that fr is invertible on each branch, by determining explicitly the two inverse
functions. [8]

(b) Write down the Frobenius-Perron equation of the map fr. [6]

(c) Consider the function
ρr(x) =Cr(x+ r)

where Cr is a normalisation constant. Determine the dependence of Cr on r such that
ρr(x) is the density of a probability measure on [0,1] for each value of r in (0,4]. [4]

(d) Show that ρr(x) is a solution of the Frobenius-Perron equation of the map fr. [6]

(e) Assuming that the density ρr(x) gives rise to an ergodic invariant measure, compute the
Lyapunov exponent of the map fr in the case r = 1/2. Why is ergodicity important
here? [7]
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Question 2. [36 marks]
Consider the map f : [0,1]→ [0,1] defined as

f (x) =


2
3
(1+ x) if 0≤ x≤ 1

2
2(1− x) if

1
2
< x≤ 1

(a) Sketch the graph of the map. Find the fixed points and the orbits of period two of the
map, and assess their linear stability. [7]

(b) Find a Markov partition and show that the map is an expanding Markov map. [8]

(c) Write down the topological transition matrix of the map and compute the number of
periodic symbol sequences of period p, with p = 1,2,3,4. Write down all admissible
periodic symbol sequences of period p = 2. Does the map have periodic points of
period three? [10]

(d) Calculate the topological entropy of the map. [4]

(e) Determine the transfer matrix of the map. Find an expression for the invariant density
and sketch the density in a diagram. [7]
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Question 3. [33 marks]
Consider the following equations of motion:

ẋi(t) = f (xi(t))+σ

N

∑
j

Gi jh(x j(t)) i = 1,2, . . . ,N

describing the dynamics of a coupled network of N nodes, where xi(t) denotes the state at
node i, f (x) = x(1− x2) governs the local node dynamics, h(x) determines the form of the
coupling, σ ∈ R is the coupling strength, and Gi j is the Laplacian of the underlying graph.
The network consists of N = 4 nodes connected as in the graph below:

Consider the diffusive coupling h(x) = h1(x) = x.

a) Determine the time-independent synchronised states. [5]

b) For each of the time-independent synchronised states, compute the master stability
function. [8]

c) Define the Laplacian of a network; hence determine the eigenvalues of the Laplacian of
this network. [6]

d) For each synchronised state find the values of the coupling strength σ such that the state
is transversely stable. [8]

e) Instead of the diffusive coupling h(x) = h1(x) = x, consider now the coupling function
h(x) = h2(x) = 1/(2+ x). For each synchronised state, find the new values of the
coupling strength σ such that the state is transversely stable. [6]

End of Paper.
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