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Throughout this exam the term measurable will be used to mean Lebesgue mea-
surable

Question 1.

(a) State the definition of a null set. [2]

(b) Show that a countable union of null sets is also null. [6]

(c) Given a subset A ⊆ R, how is the outer measure m∗(A) defined? [3]

(d) Prove that A is null if and only if m∗(A) = 0. [5]

(e) Show that for two sets A ⊆ B ⊆ R we have the monotonicity condition
m∗(A) ≤ m∗(B). [4]

(f) What does it mean to say that outer measure is sub-additive? [2]

(g) Using Parts (d) and (e) and assuming outer measure is sub-additive show that
if A is null then m∗(A ∪B) = m∗(B) for any B. [3]

Question 2.

(a) State the definition of a measurable set E ⊆ R. [3]

(b) Explain (but do not prove) whyM, the collection of all measurable sets on
R, is a σ-field. [3]

(c) Using Part (b) show thatM is closed under countable intersections, i.e. for
E1, E2, . . . ∈M the set

⋂∞
n=1En ∈M. [3]

(d) Explain whyM restricted to [0, 1], the collection of measurable subsets of
[0, 1], is also a σ-field. You may assume that [0, 1] is measurable. [2]

(e) Show that if A,B ∈M and A ⊂ B with m(A) <∞ then
m(B \ A) = m(B)−m(A). [2]

(f) Using the definition of outer measure show that for all A ⊂ R and ε > 0
there exists an open set O ⊃ A such that m(O) ≤ m∗(A) + ε. Hence, using
Part (e), show that for all E ∈M there is an open set O ⊃ E such that
m(O \ E) < ε. [7]

(g) Using Part (f) show that for any E ∈M one may find a sequence of open
sets {On} such that

E ⊂ O =
∞⋂
n=1

On, m

(
∞⋂
n=1

On

)
= m(E).

[5]
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Question 3.

(a) Give the definition of a measurable function f : R→ R. [3]

(b) State an alternative equivalent definition to the one provided in Part (a). [3]

(c) What does it mean to say a function f is equal to 0 almost everywhere on a
set E? [2]

(d) Using your answers to Parts (b) and (c), or otherwise, show that a function
f : E → R which is equal to 0 almost everywhere is measurable. [3]

(e) If fn : R→ R is a sequence of measurable functions, show that the
following are measurable

(i) maxn≤k fn

(ii) minn≤k fn [4]

Question 4.

(a) Explain why the function φ, given by

φ(x) =

{
1 x ∈ Q
0 x ∈ R \Q,

is simple and evaluate its Lebesgue integral
∫
R φ dm. [4]

(b) Given a measurable set E state the definition of the integral
∫
E
f dm for a

non-negative measurable function f : E → R. [3]

(c) What does it mean to say that a measurable function f is integrable over a
measurable set E ⊆ R? [3]

(d) Give an example where f and g are integrable over E = [0, 1] but the product
fg is not. [4]

(e) State Fatou’s Lemma for a sequence of measurable functions {fn}. [3]

(f) State the Dominated Convergence Theorem. [4]

(g) Use Fatou’s Lemma to prove the Dominated Convergence Theorem. [10]

(h) Use the Dominated Convergence Theorem to evaluate

lim
n→∞

∫ ∞
1

x

1 + nx3
dx.

[4]

End of Paper.
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