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Question 1 [26 marks]. Consider the following MA(2) process

Xt = Zt + θ1Zt−1 +
1

8
Zt−2,

where θ1 6= 0 is a constant and {Zt} is a Gaussian white noise process with mean 0 and
variance 1.

(a) Why do we require our weakly stationary models to be invertible? Explain the reason. [2]

(b) Let ρ(·) be the autocorrelation function (ACF) for the MA(2) process above. Suppose
ρ(1) = − 54

101
and ρ(2) = 8

101
. Find the value of θ1. [7]

(c) Based on the θ1 value computed in (b), determine whether the MA(2) process above is
invertible. [4]

(d) Using the value of θ1 computed in (b), calculate the variance of the sample mean
(X1 +X2 +X3 +X4)/4. [13]

Question 2 [12 marks]. Let {Zt} be a Gaussian white noise process with mean 0 and
variance σ2. Consider the time series

Xt = ZtZt−1.

Is {Xt} weakly stationary? [12]
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Question 3 [30 marks]. Consider the following model

Xt − 0.5Xt−1 − 0.2Xt−2 = Zt + 0.4Zt−1

where {Zt} is a Gaussian white noise process with mean 0 and variance σ2.

(a) What SARIMA model is this? [6]

(b) Is this model causal? [3]

(c) Use the method of coefficients matching and express this model in the form of a linear
process Xt =

∑∞
j=0 ψjZt−j with ψ0 = 1. Find an explicit formula for ψj without any

recursions. [17]

(d) Note that in order for Xt =
∑∞

j=0 ψjZt−j to hold in terms of mean square convergence,
we need

∑∞
j=0 |ψj| <∞. For the ψj’s you found in (c), do they satisfy∑∞

j=0 |ψj| <∞? Explain your reasoning. [4]

Question 4 [12 marks]. Let {Zt} be a white noise process with mean 0 and variance 1.
For the following processes, compute the partial autocorrelation function (PACF) at lag 3:

(a) Xt = 0.45Xt−1 + 0.05Xt−2 − 0.35Xt−3 + Zt. [2]

(b) Xt = 0.7Xt−1 − 0.4Xt−2 + 0.5Xt−3 + Zt − 0.7Zt−1 + 0.4Zt−2 − 0.5Zt−3. [3]

(c) Xt = Zt − 0.75Zt−1. [3]

(d) Xt =
41

36
Xt−1 −

2

3
Xt−2 +

1

9
Xt−3 + Zt −

1

4
Zt−1. [4]
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Question 5 [20 marks]. Figure 1 below shows quarterly earnings per share for Johnson &
Johnson (J&J) from the first quarter of 1960 to the last quarter of 1980.

(a) The time series in Figure 1 shows an increasing variance. Describe how you would
transform the data to solve the problem of increasing variance. [4]
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Figure 1: Johnson & Johnson quarterly earnings per share in US dollars.

First-order differencing and then lag-4 differencing were performed on the transformed
J&J data (as detailed in (a)). Figure 2 shows the sample ACF and PACF plots after
applying both differencing operators, i.e.,∇4∇ on the transformed J&J data.
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Figure 2: (Top) Sample ACF, (Bottom) Sample PACF of∇4∇ on transformed J&J data.
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(b) State SARIMA model or models indicated by the sample ACF and PACF plots in
Figure 2. Explain how you arrived at your conclusion. [8]

(c) Suppose that an ARIMA(0, 1, 0)× (2, 1, 0)4 model is fitted to the transformed J&J data.
Figure 3 below shows the resulting model diagnostics for the standardized residuals.
Moreover, performing the Box-Ljung Q test statistic on these residuals yielded

Box-Ljung test

data: resid(model$fit)
X-squared = 42.161, df = 18, p-value = 0.00105

Would you recommend this model to financial analysts working to understand the time
dependence of these data? If no, give two suggestions on how to improve this model.
Explain your reasoning. Use α = 0.05. [8]
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Standardized Residuals
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Figure 3: Model diagnostics for fitting ARIMA(0, 1, 0)×(2, 1, 0)4 to the transformed J&J data.

End of Paper.
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