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Question 1 [23 marks].
Let {Yt} be a zero-mean weakly stationary process with autocovariance function γ(h).
Denote by st the seasonal component with period 4 such that st = st−4, and let a and b be
some constants such that a 6= 0, b 6= 0.

(a) Suppose our time series is Xt = a+ bt+ st + Yt.

(i) Define the operator ∇4. [2]

(ii) Explain what is the main use of ∇4. [2]

(iii) Show that∇4Xt is a weakly stationary process and express its autocovariance
function in terms of γ(h). [9]

(b) Suppose now Xt = (a+ bt)st + Yt.
Here you can use the fact that addition or subtraction of weakly stationary processes is
still weakly stationary.

(i) Show that∇4Xt is not weakly stationary in this case. [4]

(ii) Find a differencing operator that will reduce Xt to a weakly stationary process. [6]

Question 2 [17 marks].

(a) Suppose we are given the linear filter

a−2 = −
3

35
, a−1 =

12

35
, a0 =

17

35
, a1 =

12

35
, a2 = −

3

35

with aj = 0 for j > 2 and j < −2. Would the cubic trend mt = β0 + β1t+ β2t
2 + β3t

3

pass through this linear filter without distortion? Justify your answer. [9]

(b) Exponential smoothing is defined by the following recursion:

m̂1 = X1,

m̂t = αXt + (1− α)m̂t−1, t = 2, . . . , n.

Suppose we have time series data {8, 5, 2, 4, 9, 12, 10} with X1 = 8, X2 = 5 and so on
until X7 = 10. Assume that α = 0.7. Calculate m̂5 using exponential smoothing. [8]

Question 3 [12 marks]. In the following, let {Zt} be a white noise process with mean 0
and variance 1. Describe the behavior of the autocorrelation function (ACF) and partial
autocorrelation function (PACF) for the following processes.

(a) Xt = Zt +
∑3

j=1(0.2)
jZt−j [3]

(b) Xt = −0.3Xt−1 + 0.1Xt−2 + Zt [3]

(c) Xt = 0.5Xt−1 + Zt + 0.3Zt−1 [3]

(d) Xt = 0.4Xt−1 − 0.4Zt−1 + Zt. [3]
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Question 4 [28 marks].

(a) Consider the series

Xt = sin (2πUt) ,

t = 1, 2, . . . , where U has a uniform distribution on the interval (0, 1). Prove that Xt is
weakly stationary.
(Hint: Use the trigonometric identities cos(A−B) = cos(A) cos(B) + sin(A) sin(B)
and cos(A+B) = cos(A) cos(B)− sin(A) sin(B) with the facts cos(2πk) = 1,
sin(2πk) = 0 for k = 0, 1, 2, . . . .) [9]

(b) Consider the AR(2) process

Xt = 0.45Xt−1 − 0.05Xt−2 + Zt,

where {Zt} is a white noise process with mean 0 and variance 1.

(i) Check whether this process is causal and invertible. Explain your answers. [5]

(ii) Its autocorrelation function obeys the linear difference equation

ρ(h)− 0.45ρ(h− 1) + 0.05ρ(h− 2) = 0, h ≥ 2.

Find the initial values ρ(0) and ρ(1) by solving

ρ(h)− 0.45ρ(h− 1) + 0.05ρ(h− 2) = 0, h = 1. [5]

(iii) The general solution of the linear difference equation in (ii) is of the form

ρ(h) = k1z
−h
1 + k2z

−h
2 ,

where z1 and z2 are the roots of the characteristic polynomial from the AR(2)
process above, and k1 and k2 are constants. Find ρ(h) by computing the values for
these quantities. [9]
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Question 5 [20 marks]. Figure 1 below shows the atmospheric CO2 concentration in parts
per million (ppm) at Mauna Loa. The data are monthly from 1959 to 1997.
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Figure 1: CO2 concentration in ppm.

(a) Describe the main features of the time series shown by the plot in Figure 1. [4]

First-order differencing and then lag-12 differencing were performed on the CO2 data.
Figure 2 shows the sample ACF and PACF plots after applying both differencing
operators, i.e, ∇12∇ on the CO2 data.
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Figure 2: Left: ACF of∇12∇ on CO2 data, Right: PACF of∇12∇ on CO2 data.
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The R commands to produce these plots are given below.

#name of data is co2
dco2 = diff(co2) #1st order differencing
ddco2 = diff(dco2, 12) #lag-12 differencing

par(mfrow=c(1,2))
acf(ddco2, lag.max=100) #plot sample acf
pacf(ddco2, lag.max=100) #plot sample pacf

(b) State two possible SARIMA models indicated by the sample ACF and PACF plots in
Figure 2. Explain how you arrived at this conclusion. [8]

(c) Suppose that an ARIMA(0, 1, 0)× (0, 1, 2)12 model is fitted to the CO2 data. Figure 3
below shows the resulting model diagnostics of the residuals and running the
aggregated Box-Ljung test statistics on these residuals yielded

Box-Ljung test

data: resid(m1$fit)
X-squared = 49.46, df = 18, p-value = 9.104e-05

Would you recommend this model to scientists working to understand the time
dependence of these data? If no, give suggestions on how to improve this model.
Explain your reasoning. [8]
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Standardized Residuals
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Figure 3: Model diagnostics for fitting ARIMA(0, 1, 0)× (0, 1, 2)12 to the CO2 data.

End of Paper.
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