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Question 1. [20 marks]

(a) Let T be an estimator of φ.

(i) Define what is meant by the mean square error and the bias of
the estimator T . [2]

(ii) Prove, directly from the definition of mean square error, that if T
is unbiased for φ, then the mean square error of T equals the
variance of T . [3]

(b) Let Y1, Y2, . . . , Yn be independent Poisson distributed random variables
with parameter λ.

(i) Show that Y is unbiased for λ. [3]

(ii) Show that Y is consistent for λ. [5]

(iii) Use the central limit theorem to find an approximate 100(1− α)%
confidence interval for λ. [7]

Question 2. [20 marks] Suppose that Y1, Y2, . . . , Yn are independent
inverse gamma random variables with probability density function

fY (y) =
β3

2y4
e−

β
y , y > 0,

where β > 0 is a parameter.

(a) Show that the maximum likelihood estimator of β is

3n∑n
i=1

1
Yi

.

[6]

(b) Find the Cramér-Rao lower bound for unbiased estimators of β. Given
that E(Y ) = β/2 and var(Y ) = β2/4, show that 2Y is an unbiased
estimator of β and determine whether it is an asymptotically efficient
estimator. [9]

(c) Use Neyman’s Factorisation Lemma to show that
∑n

i=1 1/Yi is a
sufficient statistic for β. [5]
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Question 3. [20 marks] Suppose that Y1, Y2, . . . , Yn are independent
lognormal random variables with probability density function

fY (y) =
1√

2πσ2y
exp

{
− 1

2σ2
(log y − µ)2

}
, y > 0,

where −∞ < µ <∞ and σ2 > 0 are parameters.

(a) Show that this distribution is a member of the exponential family. [8]

(b) Write down complete sufficient statistics for µ and σ2. [3]

(c) Given that

E(Y ) = eµ+σ2

2 and E(Y 2) = e2µ+2σ2

,

find the method of moments estimators for µ and σ2. Are these
estimators minimum variance unbiased estimators? Justify your answer. [9]

Question 4. [20 marks] Let Y1, Y2, . . . , Yn1 be exponential random
variables with parameter λ1 > 0, and let Yn1+1, Yn1+2, . . . , Yn1+n2 be
exponential random variables with parameter λ2 > 0, all independent. Let Y 1

be the mean of the first n1 observations, and let Y 2 be the mean of the
remaining observations.

(a) Show that the maximum likelihood estimators of λ1 and λ2 are 1/Y 1

and 1/Y 2, respectively. [7]

(b) Given that 2λ1n1Y 1 and 2λ2n2Y 2 have chi-squared distributions with
respective degrees of freedom 2n1 and 2n2, explain why(√

λ1

λ2

)2
Y 1

Y 2

is a pivot for
√
λ1/λ2. [7]

(c) Use this pivot to derive an exact 100(1− α)% confidence interval for√
λ1/λ2. [6]
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Question 5. [20 marks] Suppose that Y is a single observation from a
population with beta distribution

fY (y) = θyθ−1, 0 ≤ y ≤ 1,

where θ > 0 is a parameter.

(a) For testing H0 : θ ≤ 1 against H1 : θ > 1, find the significance level and
the power function of the test that rejects H0 if Y > 1/2. [6]

(b) Find the most powerful level α test of H0 : θ = 1 against H1 : θ = 2. [8]

(c) Is there a uniformly most powerful test of H0 : θ = 1 against H1 : θ > 1?
Justify your answer. [6]

End of Paper.
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