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Question 1. [34 marks] Suppose that X and Y are two random variables.

(a) Define what it means for two random variables X and Y to be independent. [3]

(b) Suppose that the joint density function fX,Y is given by

fX,Y (x, y) =

{
cxy if 0 < x < y < 2,
0 otherwise.

(i) Prove that c = 1
2
. [5]

(ii) Show that the marginal probability density function for Y is

fY (y) =

{
1
4
y3 if y ∈ (0, 2),

0 otherwise.
[8]

(iii) Find the probability P{X 6 1 and Y 6 1}. [7]

(iv) Are X and Y independent? Justify your answer. [3]

(v) Find the conditional density function fX|Y=y(x) and compute the
conditional expectation E(X2|Y ). [8]

Question 2. [16 marks] Suppose that a random walk on a line starts from n,
M 6 n 6 N . The probability of a jump to the right is p and the probability of a
jump to the left is q = 1− p. The walk stops once it reaches M or N . Let rn be the
probability that the walk starting from n reaches N before M and En be the
expected duration of the walk.

(a) Write down the equations for rn, where M 6 n 6 N . [3]

(b) Write down the equations for En, where M 6 n 6 N . [3]

(c) Suppose now that p = q = 1/2 and M = 0. Write down the solution to the
equations from part (b) (no proof is required). [2]

(d) Now take N =∞, so that the random walk is on the whole of the
non-negative integers. Prove the following statement: Suppose that
p = q = 1/2 and the random walk starts from position 2. Then the expected
time until it reaches zero is infinite. [8]
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Question 3. [21 marks] Let Y0, Y1, Y2 . . . be a branching process starting with
one ancestor, (that is Y0 = 1) and generated by a random variable X with the mean
value E(X).

(a) State, in terms of the mean value of X , the necessary and sufficient condition
for the probability of extinction of the branching process to be strictly less
than 1. [2]

(b) Suppose now that X has distribution P(X = k) = pqk, k = 0, 1, 2, ..., where
0 < p < 1 and q = 1− p.

(i) Compute the probability generating function G(t) of the random
variable X and show that E(X) = q

p
. [4]

(ii) Prove that the probability of extinction of this branching process is 1 if
and only if p > 0.5.
Hint: use the statement of question 3(a). [4]

(iii) Suppose now that p < 0.5. Find the probability of extinction of this
branching process. [7]

(iv) Prove that

P(Y10 > 100) 6
q10

100p10
.

Hint: use Markov’s inequality. [4]

Question 4. [11 marks] Let N(t) be a Poisson process.

(a) Give the definition of the Poisson process N(t) with rate λ > 0. [5]

(b) Prove that if 0 < t < s and m, n are integers such that 0 6 m 6 n then

P(N(t) = m, N(s) = n) = e−λsλn
tm(s− t)n−m

m!(n−m)!
[6]

Question 5. [18 marks]

(a) State and prove Markov’s inequality. [8]

(b) State (do not prove) the Law of Large Numbers. [5]

(c) State the Central Limit Theorem. [5]

End of Paper.
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