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Question 1. (17 marks)
Let C be a curve in R? whose parametric equation reads r(t) = (tcost, tsint), t > 0,
and consider the points A = (—m,0),B = (0,7/2),C = (0,0).

(a) Justify which points from {A, B, C} belong to the curve C. 3]

(b) Consider the vector field F = zi + yj. Calculate the line integral of F over C,
between A and B. 6]

(c) Make a sketch of the vector field F(z,y).
According to this sketch (that is to say, without computing it), what can you
say about the curl of F = zi + yj + 0k ? [4]

(d) Make a sketch of curve C (hint: use polar coordinates). 4]

Question 2. (6 marks)

Let C be the curve in R? whose parametric equation reads r(t) = (cos2t,sin 2t).
Calculate the arc length of C, between ¢ = 0 and ¢ = 7/2. Give details of your
calculations.

Question 3. (11 marks)
(a) State the difference between a scalar field and a vector field. 2]

(b) Explain what geometric properties we are actually measuring when we compute
the divergence and the curl of a vector field close to a given point. [4]

(c) Prove that if we define the vector field A = V x F, then the flux of A over any
closed surface is null for all F. [5]

Question 4. (13 marks)
Let U(z,y,2) = 22 + 49> + 922, and F(z,y,2) = (y + 2)i + zj + (z + 22)k.

(a) Calculate the gradient of U, and describe the surface U = 56. [4]
(b) Calculate the divergence and curl of F. [4]

(c) State the definition of a scalar potential and compute a scalar potential for F
in case this vector field admits one. 5]
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Question 5. (17 marks)

(a) State, without proof, the Stokes theorem. Define the terms used and any
required conditions. [4]
(b) Let F be the vector field given by F = (23 — 4y)i + (27 — 32)j + (y + 22k
Using the Stokes theorem, or otherwise, evaluate the line integral of F around

the unit circle 22 +y% = 1, z = 0, traversed anticlockwise starting and finishing
at the point (1, 0, 0). 8]

(¢) Show, using the Stokes theorem, that the line integral of an irrotational vector
field around a closed curve is null. [5]

Question 6. (10 marks)

The classic gravitational field is a model used to describe the influence that a massive
body (such as the Earth) produces around itself, producing a force on another mas-
sive body which we call gravitational force. The gravitational field is a vector field
that in spherical coordinates reads G(r,0,¢) = —ge,, where g ~ 9.8 is a constant
and e, is a unit vector in spherical coordinates.

(a) Express G in terms of the Cartesian unit vectors i,j,k. 3]
(b) Express the area element dS in spherical coordinates. 3]

(c¢) Using spherical coordinates, compute the flux of gravitational field over the
surface of the Earth, assuming the Earth is a sphere of radius R. 4]

Question 7. (14 marks)
Let f(x) be a periodic function of period 27 defined in (—m, ) by

—1/2 if —7<z<0
flay={ %
1/2 f0o<z<m.

(a) State, without proof, Dirichlet’s theorem, and use it to compute S(7), where
S(z) is the Fourier series of f(z). [4]

(b) Calculate the Fourier series of f(z). [10]
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Question 8. (12 marks)
Consider the Laplace equation V2¢ = 0 over a rectangle in the XY plane, subject to
some boundary conditions.

(a) State the Laplace equation in two dimensional Cartesian coordinates and show
that U(z,y) = coshz - siny fulfils it. 3]

(b) Show that if n scalar fields ¢1, @2, .. ., ¢, fulfil the Laplace equation, then their
linear combination ¢ = Y " | a;¢; (where o; € R Vi) is a scalar field that also
fulfils the Laplace equation. 3]

(c) Explain how you would check if a scalar field of the form
é(z,y) = (Acos(kx) + Bsin(kx))(C cosh(ky) + D sinh(ky)),

where A, B, C, D, k are constants, is indeed the solution of the Laplace equation
subject to some boundary conditions. 6]

End of Paper.
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