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Throughout, you should simplify your answers as much as possible.

Question 1 Let A = (1,3,−1) and B = (4,1,1), and let a and b be the position
vectors of A and B respectively. Determine:

(a) the length of a; [2]

(b) the vector having length 3 in the same direction as a; [3]

(c) the vector represented by −→AB; [2]

(d) parametric equations for the line through A and B; [4]

(e) the cosine of the angle between a and b; [3]

(f) the vector product a×b of a and b. [4]

Question 2 Let a =

 3
−1
−6

, and let b and c be position vectors of points in the

(x,y)-plane such that the area of the parallelogram with sides b and c is 7. Let the
parallelepiped with sides corresponding to a, b and c have volume V .

(a) Is there sufficient information to calculate V ? [Answer: ‘Yes’ or ‘No’.] [2]

(b) (i) If your answer to Part (a) was ‘Yes’, determine V .

(ii) If your answer to Part (a) was ‘No’, specify an extra piece (or extra
pieces) of information necessary and sufficient to determine V . [If you
specify redundant information you will gain no marks.] [2]

Question 3

(a) Use Gaußian elimination (to reduce to echelon form) followed by back sub-
stitution to determine all solutions to the following system of linear equations
in x, y, z defined over R:

−x−2y+5z = 8
3x+2y+ z =−4
x+ y− z =−3

 .

[8]

(b) What does your answer to Part (a) tell you geometrically about the intersection
of the three planes defined by the equations above? [2]
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Question 4 Calculate the distance between the parallel lines with vector equations

r =

 2
1
2

+λ

 1
2
3

 and r =

 2
−1
3

+ µ

 −2
−4
−6


respectively. (The parameters λ and µ both range over the whole of R.) [6]

Question 5 Let

A =

 1 2 0
−1 1 2

1 −2 −1

 and B =

 2 −1 0
−1 2 0

1 −2 −3

 .

Calculate the following:

(a) −2A+B; [4]

(b) A2; [4]

(c) the characteristic polynomial of B; [5]

(d) det B [Hint: the answer to the previous part should help]. [3]

Question 6 In this question, points A, B, C, D, P, Q, R and S have position vectors
a, b, c, d, p, q, r and s respectively.

(a) Prove that ABCD is a parallelogram if and only if a+ c = b+d. [3]

(b) Now let A, B, C, D be any four points in 3-space, and let P, Q, R, S be the
respective mid-points of the line segments AB, BC, CD, DA. Prove that PQRS
is a parallelogram. [5]
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Question 7

(a) Define precisely, without using coördinates, the scalar product u·v of vec-
tors u and v. [3]

(b) Define precisely, without using coördinates, the vector product u×v of vec-
tors u and v. [5]

(c) Prove that for all vectors a and b we have |a×b|6 |a||b|. Determine precisely
when equality holds. [8]

Question 8

(a) Define what it means for a map t : Rm → Rn to be a linear transformation. [4]

(b) Define what is meant by an eigenvector of an n× n matrix A, and the eigen-
value corresponding to that eigenvector. [4]

(c) Let Sθ denote the 2×2 matrix representing the reflexion (in the (x,y)-plane)
in the line through the origin at anticlockwise angle θ/2 to the x-axis. Then

Sθ =
(

cosθ sinθ

sinθ −cosθ

)
.

(i) Determine the eigenvalues of Sθ . [4]

(ii) Now let S be the matrix of the reflexion in the line y = x. Write down S,
and write down an eigenvector of S and its corresponding eigenvalue. [4]

(d) Let A be an n×n invertible matrix with eigenvalue λ . Prove that λ 6= 0, and
prove that A−1 has λ−1 as an eigenvalue. [6]

End of Paper
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