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Question 1. (a) Find the set of all x € R which satisfy the inequality

2% 4+ 22 — 9| < 6.

[5 marks]
(b) Let f(z) = 823 + 1. Determine the inverse function f~1. [5 marks]
(c) Determine
. sinx —x
lim 3
z—0 X
[5 marks]

(d) Find the equation of the tangent to the curve 22 + y3 = 2 at the point (1,1).

[5 marks]
(e) Find
2z
————dz.
/ 2+ 22 +1 v
[5 marks]
(f) Find
1
/ 22 et dz.
0
[5 marks|
(g) Determine
d [~
el / esmt dt .
dzx 1
[5 marks|

(h) Define the improper integral floo 27 2dz as a limit of definite integrals. Find
this limit if it exists or give reasons if it does not exist. [5 marks]|

Question 2. Consider the curve y = f(z) for the function f(z) = (1 — 2?)~L.

(a) Identify the domain of f and determine whether or not f is an even function
or an odd function. [2 marks]

(b) Find f/(z) and f"(x). [4 marks]

(¢) Find the critical points of f, determine where f is increasing or decreasing,
and determine the behavior of f at each of its critical points. [7 marks]

(d) Determine the concavity of the curve and find any points of inflexion. [5 marks]

(e) Determine the behaviour of f(z) as ¢ — +oo and identify any
asymptotes. [2 marks]

(f) Plot key points, such as intercepts, critical points, and points of inflexion, and
sketch the curve. [5 marks|
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Question 3. Let f be a function defined on an open interval (a,b) and ¢ € (a,b).

(a) Define the derivative of f at ¢ and explain what it means to say that f is
differentiable on (a,b). [5 marks]

(b) Explain what it means to say that f has a local minimum at c. What can you
say about the derivative of f at ¢ when f has a local minimum at ¢? Give a
brief justification for your answer. [5 marks|

(c) Use your definition in (a) to prove the following statements.

d
aw_2 = 2773
[5 marks|
(i)
@) = @) S )
whenever f is differentiable at z. [5 marks]

Question 4. (a) Define the natural logarithm function and state its domain and
range. [5 marks|

(b) Prove the following statements, stating clearly any results which you use in
your proofs.

(i) % Inz =271 [2 marks|
(ii) Inz is an increasing function. [2 marks|
(iii) In(x?) = ¢lnx for any rational number g. [3 marks]
(iv) limg—oo Inz = 0. [3 marks]

End of Paper.
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