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Question 1 (a) Find the set of all x ∈ R which satisfy the inequality

|x− 1| ≤ x2 − 1.

[5 marks]

(b) Let

f(x) =
x2 − 4x + 4

x2 − x− 2

for all x ∈ R \ {−1, 2}. Determine whether each of the following limits exist,
giving the value if it exists and a reason if it does not exist:

lim
x→−1

f(x); lim
x→2

f(x); lim
x→∞

f(x).

Determine whether f has a continuous extension at x = −1 or x = 2, defining
the extension if it exists and giving a reason if it does not exist. [7 marks]

(c) Define the function arctan, specifying both its domain and codomain, and
determine its derivative. [7 marks]

(d) Find the equation of the tangent to the curve y3 + x2y − 3x + 1 = 0 at the
point (1, 1). [5 marks]

(e) Find the area of the region bounded above by the curve x2 + y2 = 2 and below
by the curve y = x2.

[8 marks]

(f) Evaluate ∫
(x + 2) ln(x− 3) dx .

[8 marks]

Question 2 Consider the curve y = f(x) for the function f(x) = 3x
2
3 (5− x) .

(a) Identify the domain of f and determine whether or not f is an even function
or an odd function. [2 marks]

(b) Find f ′(x) and f ′′(x). [4 marks]

(c) Find the critical points of f , determine where f is increasing or decreasing,
and determine the behavior of f at each of its critical points. [7 marks]

(d) Find the inflexion points for f , if any occur, and determine the concavity of
the curve. [5 marks]

(e) Determine the behavior of f(x) as x→ ±∞ and identify any
asymptotes. [2 marks]

(f) Plot key points, such as intercepts, critical points, and points of inflexion, and
sketch the curve. [5 marks]
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Question 3 (a) Differentiate f(x) = sinx from first principles. (You may assume
the values for limh→0

sinh
h and limh→0

cosh−1
h in your proof.) [5 marks]

(b) State, without proving, the Mean Value Theorem. [5 marks]

(c) Using the Mean Value Theorem, or otherwise, prove that if f is a differentiable
function on an open interval I and f ′(x) > 0 for all x ∈ I then f is increasing
on I. [5 marks]

Question 4 (a) Let f be a continuous function defined on an interval [a, b] and

a = x0 < x1 < . . . < xn = b

be a partition of [a, b].

(i) Define the upper and lower Riemann sums for f with respect to this
partition. [5 marks]

(ii) Explain what it means to say that f is integrable on [a, b]. [5 marks]

(b) Calculate the upper Riemann sum for f(x) = x2 on [0, 1] with respect to the
partition x0 < x1 < . . . < xn when xi = i/n for all 0 ≤ i ≤ n. Determine the
limit of this sum as n→∞. [10 marks]

End of Paper
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