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Question 1 [25 marks].

(a) Let X1 and X2 be two independent continuous random variables, each with the
probability density function

fX(x) =

{ √
2
π
e−x

2/2 if x ≥ 0,

0 otherwise.

(i) Calculate the expectation and variance of X1 and X2. [3]

(ii) Now calculate the expectation and variance of the sum Z = X1 +X2. [2]

(iii) Finally, determine the probability density function of Z by evaluating the
integral

fZ(z) =

∫ ∞
−∞

fX(x) fX(z − x) dx.

(Note: Your solution may be expressed in terms of the cumulative
distribution function of the standard normal distribution.) [5]

(b) Suppose that I toss a coin N times. The coin is biased, with ph being the
probability that a given toss is a head. You may assume that N > 0 and
0 < ph < 1.

Let Hn denote the number of heads in the first n tosses (0 < n ≤ N).

Determine the correlation of Hm and Hn, where 0 < m ≤ N and 0 < n ≤ N . [6]

(c) Consider a European put option with strike price K and expiry time T . The
underlying share does not pay any dividends during the lifetime of the option.

Suppose that, at some earlier time t, the market price of the option is Pt, and the
market price of the share is St (which is strictly positive). The
continuously-compounded risk-free interest rate is r.

Show that Pt must satisfy each of the following conditions, otherwise there will be
arbitrage opportunities:

(i) Pt > 0. [3]

(ii) Pt < Ke−r(T−t). [3]

(iii) Pt ≥ Ke−r(T−t) − St. [3]

(Hint: For each case separately, identify an arbitrage opportunity if the condition
does not hold.)

© Queen Mary University of London (2023)



MTH771P /MTH771U (2023) Page 3

Question 2 [20 marks].

Instruction: Answer parts (a) and (b) of this question in the context of a general
one-period market model with a finite number of assets (including a bank account or
other risk-free asset) and a finite number of outcomes.

(a) Explain what is meant by the following terms:

(i) a portfolio, [1]

(ii) an arbitrage opportunity, [1]

(iii) a risk-neutral probability measure, [1]

(iv) a complete market. [1]

(b) State the First and Second Fundamental Theorems of Asset Pricing. [4]

Now consider the following specific one-period model, with two risky assets and three
possible outcomes:

Price at time 0 Price at time 1
Outcome 1 Outcome 2 Outcome 3

Asset A 35 40 46 32
Asset B 25 50 35 10

There is also a bank account paying an interest rate R = 0.2 per period.

(c) Verify that there is no arbitrage in this market, and that the market is complete.

(Note: Show all the steps of your proof. Clearly state any theorems that you use,
at the points in your proof when you use them.) [6]

(d) Suppose that an option has payoff at time 1 given by

V1 = max(A1 +B1 −K, 0),

where A1 and B1 are the prices at time 1 of assets A and B respectively, and the
strike price K = 50. Such an option is known as a basket option.

Determine the fair price V0 of this option at time 0. [2]

(e) Suppose that I sell 500 of these options at time 0.

How many units (shares) of assets A and B would I need to buy or sell, also at
time 0, in order to hedge my position? [4]
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Question 3 [10 marks]. Consider the four-period binomial model, with market
parameters S0 = 100, u = 1.5, d = 0.7 and R = 0.1. (S0 is the initial price of the stock,
u and d denote the multiplicative jump sizes of the stock price at each time step, and R
is the risk-free interest rate per period.) Denote the stock price process as
S = (S0, S1, S2, S3, S4).

Consider a lookback option that has payoff at time N = 4 given by

V4 = max
(

max(S1, S2, S3, S4)−K, 0
)
,

where K = 160 is the strike price.

Calculate the fair price V0 of this option at time 0. [10]

Question 4 [15 marks].

(a) (i) Give a formal definition of the Wiener process. [4]

(ii) Explain how geometric Brownian motion is related to the Wiener process. [1]

(b) A European log option is a derivative that pays

VT (ST ) = max

(
log

(
ST
K

)
, 0

)
at expiry time T , where ST is the stock price at expiry and K is the strike price.
In this question you will consider a particular log option that has strike price
K = 98 and expiry time eight months from today (i.e. T = 2

3
years).

The current price of the underlying stock is S0 = 102, and the stock price is
assumed to follow geometric Brownian motion with annualised drift µ = 0.15 and
volatility σ = 0.24. You may assume that the underlying stock pays no dividends
during the lifetime of the option. The continuously-compounded annualised
risk-free interest rate is r = 0.05.

(i) Estimate the current price of this log option, using the discrete-time
binomial model with 8 periods. [7]

(ii) Compare this estimate with the exact Black-Scholes value, given by

V0,BS = e−rTσ
√
T
{
d−Φ(d−) + φ(d−)

}
,

where

d− =
log(S0/K) + (r − σ2/2)T

σ
√
T

.

As usual, Φ(x) and φ(x) are the cumulative distribution function and
probability density function respectively of the standard normal distribution.
You will need to use one value from the following table:

x Φ(x)
0.160 786 0.563 869
0.276 275 0.608 832
0.356 745 0.639 359
0.472 234 0.681 620 [3]
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Question 5 [30 marks].

(a) Suppose that we have a call and a put option, both European and both on the
same underlying stock, with the same strike price K and expiry time T . The
underlying stock pays no dividends during the lifetime of the options. There is
also a bank account with continuously-compounded interest rate r.

Derive the put-call parity formula relating the option prices (Ct and Pt) at some
earlier time t ≤ T .

(Note: Ensure that you clearly justify each step in your proof.) [6]

(b) The Black-Scholes price at time t = 0 of a European call option is given by

C0 = S0Φ(d+)−Ke−rTΦ(d−),

with

d+ =
log(S0/K) + (r + σ2/2)T

σ
√
T

and d− = d+ − σ
√
T ,

and where Φ(x) is the cumulative distribution function of the standard normal
distribution. The other symbols have their usual meanings.

Using the put-call parity formula, derive a formula for the Black-Scholes price P0

of the corresponding European put option, expressing your solution in the most
compact form possible. [2]

(c) By (partially) differentiating the expression for P0 with respect to S0, find the
formula for the delta ∆ of this put option. [6]

(d) By differentiating once again, find the formula for the gamma Γ. [2]

(e) Show that Γ (when viewed as a function of S0, with all other quantities kept
fixed) takes its maximal value when S0 takes the value

S∗0 = K exp

[
−
(
r +

3σ2

2

)
T

]
. [8]

(f) Finally, find a compact formula for the theta Θ of this put option, where

Θ = −∂P0

∂T
. [6]

End of Paper.
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