

Main Examination period 2023 – May/June – Semester B

MTH762P / MTH762U: Continuous-Time Models in Finance

Duration: 3 hours

The exam is intended to be completed within **3 hours**. However, you will have a period of **4 hours** to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be **handwritten** and should **include your student number**. Only one attempt is allowed – **once you have submitted your work, it is final**.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a **single PDF file**, and submit this file using the tool below the link to the exam;
- e-mail a copy to **maths@qmul.ac.uk** with your student number and the module code in the subject line;

Examiners: A. Gnedin, M. Phillips

In this exam $(B(t), t \ge 0)$ denotes the standard Brownian motion (BM), which is considered together with the natural filtration $\mathcal{F}^B = (\mathcal{F}^B_t, t \ge 0)$.

Question 1 [25 marks]. Consider the process

$$X(t) = e^{-t} + \int_0^t e^s dB(s), \quad t \ge 0.$$

- (a) Is the process $(X(t), t \ge 0)$ Gaussian? Explain your answer. [5]
- (b) Find the covariance function Cov(X(s), X(t)). [5]
- (c) Show that the random variables $\xi = X(2)$ and $\eta = X(5) X(3)$ are independent. [5]
- (d) Determine $\mathbb{E}[X(t) | \mathcal{F}_s^B] X(s)$ for $0 \le s < t$. [5]
- (e) Which of the following applies to $(X(t), t \ge 0)$: martingale, submartingale, supermartingale? Explain your answer. [5]

Question 2 [25 marks]. Consider the stock-bond model with fixed interest rate r and the stock price satisfying the stochastic differential equation

$$dS(t) = S(t)[\alpha dt + \sigma dB(t)], \quad t \in [0, T],$$

with some initial price S(0). Consider the square-root option of European style, which at given expiration time T has value

$$V(T) = \sqrt{S(T)}.$$

Let v(t,x) be the no-arbitrage price of the option at time t given the stock price S(t)=x.

- (a) Describe the process $(\sqrt{S(t)}, t \ge 0)$ under the risk-neutral measure, in particular determine the expected value of $\sqrt{S(t)}$. [6]
- (b) Determine the no-arbitrage price v(t, x) explicitly. [4]
- (c) Verify that v(t,x) satisfies the Black-Scholes-Merton partial differential equation. [5]
- (d) Let $\Delta(t, x)$ be the number of shares in a self-financing stock-bond portfolio needed to hedge the option. Determine $\Delta(t, x)$ explicitly. [4]
- (e) Now suppose the square-root option is of American style. What is then the optimal time to exercise the option? [6]

Question 3 [25 marks]. Consider a stock-bond market model with continuously compounded interest rate r, time horizon T and three stocks described by a system of stochastic differential equations

$$dS_i(t) = S_i(t)[\alpha_i dt + \sigma_{i1} dB_1(t) + \sigma_{i2} dB_2(t)], \quad i = 1, 2, 3,$$

where $(B_1(t), t \in [0, T])$ and $(B_2(t), t \in [0, T])$ are two independent Brownian motions under the market probability measure \mathbb{P} , and $r, \alpha_i, \sigma_{i1}, \sigma_{i2}$ (i = 1, 2, 3) are given positive constants.

- (a) State in this context the First Fundamental Theorem of Asset Pricing. [4]
- (b) Derive a stochastic differential equation for the discounted stock price process $(e^{-rt}S_i(t), t \in [0, T]).$ [5]
- (c) Is the market model complete if r = 0.1 and $\alpha_i = 0.2$, $\sigma_{i1} = \sigma_{i2} = 1$ for i = 1, 2, 3? [5]
- (d) For the remainder of the question assume that

$$\alpha_1 = 0.3; \ \sigma_{11} = 0.2; \ \sigma_{12} = 0.1$$
 $\alpha_2 = 0.3; \ \sigma_{21} = 0.1; \ \sigma_{22} = 0.2$
 $\alpha_3 = 0.35; \ \sigma_{31} = 0.2; \ \sigma_{32} = 0.2$

- (i) Suppose r = 0.15. Describe the processes $(B_1(t), t \in [0, T]), (B_2(t), t \in [0, T])$ under the risk-neutral probability measure $\widetilde{\mathbb{P}}$. [4]
- (ii) Suppose r = 0.2. Construct explicitly a stock-bond trading strategy, that is an arbitrage. You may look for such a strategy with positions in stocks (in shares) given by

$$\Delta_i(t) = \frac{\delta_i}{S_i(t)}, \ i = 1, 2, 3,$$

for some constants δ_i . [7]

[4]

[5]

Question 4 [25 marks]. Let $v(x, K, \sigma, r, T)$ be the Black-Scholes price of the European call, where x is the current price of the underlying stock. This question is concerned with pricing an *exchange option*, which gives the holder the right (but not the obligation) to exchange at maturity time T one share of one stock against one share of another stock.

Consider a market with interest rate r, and two different stocks which under probability measure \mathbb{P} follow the geometric Brownian motions

$$S_1(t) = S_1(0) \exp\left((r - \frac{\sigma_1^2}{2})t + \sigma_1 B_1(t)\right) \text{ and } S_2(t) = S_2(0) \exp\left((r - \frac{\sigma_2^2}{2})t + \sigma_2 B_2(t)\right),$$

where $(B_1(t), t \in [0, T])$ and $(B_2(t), t \in [0, T])$ are independent Brownian motions. The payoff of the exchange option is

$$V(T) = (S_1(T) - S_2(T))_+.$$

- (a) Is the probability measure \mathbb{P} risk-neutral?
- (b) Show that the quotient

$$Q(t) = \frac{S_1(t)}{S_2(t)}$$

is a geometric Brownian motion with volatility parameter $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$. [6]

(c) Let $\widehat{\mathbb{P}}$ be the probability measure defined by

$$\frac{d\widehat{\mathbb{P}}}{d\mathbb{P}} = \exp\left(-\frac{\sigma_2^2}{2}T + \sigma_2 B_2(T)\right).$$

Describe the processes $(B_2(t), t \in [0,T]), (B_1(t), t \in [0,T])$ and $(Q(t), t \in [0,T])$ under the probability measure $\widehat{\mathbb{P}}$.

(d) Show that the no-arbitrage price of the exchange option (at time t = 0) is

$$S_2(0)\,\widehat{\mathbb{E}}\,[(Q(T)-1)_+],$$

where $\widehat{\mathbb{E}}$ denotes the expectation under the probability measure $\widehat{\mathbb{P}}$.

(e) Show that the no-arbitrage price of the exchange option is

$$v(S_1(0), S_2(0), \sigma, 0, T),$$

with σ as in part (b). [5]

End of Paper.