
Main Examination period 2021/22

MTH739U / MTH739P: Topics in Scientific Computing
2022/23 – Coursework 2

Assignment date: Monday 24/11/2022
Submission deadline: Monday 23/01/2023 at 23:55 BST

The coursework is due byMonday 23rd January 2023 at 23:55 GMT. Please submit are-
port in pdf format containing answers to all questions, complete with written explanations
and printed figures. Figures muct contain a title, axis labels, and a legend (if more than one
curve are shown in the same figure). Please provide an explanation of any original algo-
rithms used for solving the problems (except for material explicitly discussed in lectures, e.g.
the Runge-Kutta method). You normally must show that your program works using suitable
examples. If using Wolfram language, the report and code can be submitted in a single Math-
ematica notebook (as a single .nb file accompanied by a .pdf copy of that notebook). If using
another language, the report must be submitted as a pdf file, and the code produced to an-
swer each question must be copied into the pdf report document and explained; the code must
also be submitted in a separate file that can be compiled and executed. (It might be useful to
organise the code in different files or folders, one for each question.)Reports that do not
include code or, conversely, code not accompanied by a report, cannot be marked. Only
material submitted through QMPlus can be accepted.Late submissions will be treated in
accordance with College regulations. If you use online or other resources, please cite them
appropriately.QMPlus automatically screens for plagiarism. Plagiarism is an assessment
offence and carries severepenalties.

1

Part A: Coursework [55 marks]

Question 1. [10 marks]

(a) Write a program that numerically evaluates the first and second derivatives of a function
f(x) whose values on a fixed grid of points are specifiedf(xı), ı = 0, 1, ..., N , using
the pseudo-spectral method described below. Assume that the pointsxı are located at
the Chebyshev-Gauss-Lobatto nodes

xı =
b + a

2
+

b − a

2
zı, zı = sin

(
2ı − N

2N
π

)

, ı = 0, 1, . . . , N (1)

in the intervalx ∈ [a, b]. These points are the extrema of the Chebyshev polynomial of
the first kindTN (x). Evaluate the derivatives using the approximations

f ′(xı) '
N∑

=0

D(1)
ı f(x), f ′′(xı) '

N∑

=0

D
(2)
ıj f(x) (2)

whereD
(1)
ı are the elements of the(N + 1) × (N + 1) derivative matrices, given by

D(1)
ı =

2

b − a

cı(−1)ı+

c(zı−z)
ı 6=

− z

2(1−z2
)

ı = 6= 0, N

−2N2+1
6

ı = = 0
2N2+1

6
ı = = N

(3)

wherec0 = cN = 2 andc1, . . . , cN−1 = 1. The second derivative matrix can be
evaluated byD(2) = (D(1))2 or, with lower round-off error, by

D(2)
ı =

(
2

b − a

)2

(−1)ı+

c

z2
ı +zız−2

(1−z2
ı)(zı−zj)

2 ı 6= , ı 6= 0, ı 6= N

2
3

(−1)

cj

(2N2+1)(1+zj)−6

(1+zj)
2 i 6= j, ı = 0

2
3

(−1)+N

c

(2N2+1)(1−z)−6

(1−z)
2 ı 6= , ı = N

−
(N2−1)(1−z2

)+3

3(1−z2
)2

ı = , ı 6= 0, ı 6= N

N4−1
15

ı = = 0 or N

(4)

The Chebyshev differentiation matrices can be constructed automatically (with slightly
higher error) via the Wolfram Language commands:

D1=NDSolve‘FiniteDifferenceDerivative[Derivative[1],X,
"DifferenceOrder"->"Pseudospectral"]@"DifferentiationMatrix"

D2=NDSolve‘FiniteDifferenceDerivative[Derivative[2],X,
"DifferenceOrder"->"Pseudospectral"]@"DifferentiationMatrix"

2

which respectively return the matricesD(1),D(2) for a listX of nodes given by Eq. (1). [3]

(b) Demonstrate that your program works by evaluating the first and second derivatives of a
known function,e−16x2

. Graph or tabulate the difference between the numerical and
analytical derivatives,ei = f ′

numerical(xi) − f ′
analytical(xi) and

ri = f ′′
numerical(xi) − f ′′

analytical(xi), as a function ofxi. [3]

(c) Show that the difference (measured with an error norm such asl1) between your
numerical derivatives and the known analytical ones approaches zero ase−N . You might
do this by tabulating or graphingeN l1 ∼ constant orln l1 ∼ constant− N for several
different values ofN , wherel1 =

∑N
i=0 |ei| for the first derivative error norm, and

similarly for the second derivative. [4]

Remark: For stability and accuracy purposes, it is often beneficial to replace each element
Dii of the main diagonal with the negative sum of all matrix elements in the same row,
Dii = −

∑
j 6=i Dij. This ensures that the differentiation matrix returns zero when multiplying

a constant vector.

3

Question 2. [10 marks] Implicit and explicit integration of ODEs.
Consider the 2D anisotropic harmonic oscillator, described by the first order system:

dx

dt
= px

dy

dt
= py

dpx

dt
= −

∂V

∂x
dpy

dt
= −

∂V

∂y

whereV (x, y) = sin x + cos y is the potential.

(a) Write the system in the vector formd~u/dt = ~f(t, ~u), where~u := {x, y, px, py}. What is
the vector-valued function~f(t, ~u)? Define this function in Wolfram Language (or a
language of your choice). [1]

(b) Use a 2nd order Runge-Kutta (RK2) method that increments the vector~u in each time
step to evolve the system. Usex(0) = 0, y(0) = 0, px(0) = 1, py(0) = 1 as initial
conditions andΔt = 0.1 as the time-step. Stop the evolution at timet = 100. Describe
how your code works. Plot the position componentsx(t), y(t) as functions of timet.
Plot the energyE(t) = 1

2
(p2

x + p2
y) + V (x, y) and the differenceδE(t) = E(t) − E(0)

as functions of time. Does the RK2 method conserve energy? Why or why not? [4]

(c) Repeat (b) using the trapezium rule

~un+1 − ~un =

∫ tn+1

tn

~f(t, ~u(t))dt '
Δt

2
(~fn+1 + ~fn) (5)

to evolve the system, where~un = ~u(tn), ~fn = ~f(tn, ~un), andΔt = tn+1 − tn is the
(constant) time step. Does the trapezium rule conserve energy? Why or why not?

Remark: this method is implicit, becausetn+1 appears on both sides of the evolution
equations. To obtain the future values of the momentum and position, one may use aDo loop
at each time step (i.e. a nestedDo loop). The loop at each time step can use a RK1 or RK2
step as initial guess, and then iterate the above system of equations 10 times, repeatedly
substituting the last value~un+1 into the function~fn+1 = ~f(tn+1, ~un+1) on right-hand side, to
compute the new value of the left-hand side. That is, at each time step, one can perform the
self-consistent iteration

~u new
n+1 = ~un +

Δt

2
[~f(tn+1, ~u

old
n+1) + ~f(tn, ~un)] (6)

and stop after 10 iterations. [5]

4

Question 3. [15 marks] Explicit and implicit integration of PDEs.

(a) Consider the hyperboloidal advection equation

∂tu +
x2

1 + x
∂xu = 0 (7)

for the scalar functionu(t, x), with initial datau(0, x) = f(x) for some chosen function
f(x), in the domainx ∈ [0, 1]. You may assume thatf(x) = e−α[β−ln(1−x)]2 , with
α = 220 andβ = −2/3. Show thatuanalytical(t, x) = e−α[β−t−ln(1−x)]2 satisfies Eq. (7).
(You may use computer algebra to show this analytically). [1]

(b) Write a program that uses the method of lines to evolve Eq. (7). Use a pseudo-spectral
method for spatial discretization (for a Chebyshev collocation method, the 1st order
differentiation matrix is given in Question 1). Use an explicit Runge-Kutta method (or
equivalent Taylor method) for time integration. Explain how your programme works.
Plot the solutionunumerical(t, x) and the errorδu(t) = unumerical(t, x) − uanalytical(t, x) as a
function ofx at different instants of timet. What happens if the time-step exceeds the
Courant limit? [5]

(c) Plot the energy errorδE(t) = E(t) − E(0) as a function of timet, where

E =

∫ 1

0

dx
x2

1 + x
(∂xu)2. (8)

is the energy. Is energy conserved numerically? Why?
Hint: if using a Chebyshev collocation method with the grid-points of Question 1, you
may use the Clenshaw-Curtis quadrature rule from Coursework 1 to calculate the energy
integral.

Hint: stop evaluating the energy before the wave reaches the boundaries, otherwise you
will observe energy loss as the pulse exits the domain. [4]

(d) Repeat (b) and (c) using an implicit method (such as the trapezium or Hermite rule) for
time integration. What happens if you increase the time-step? Is energy conserved
numerically? Why? [5]

Hint: the trapezium rule applied to the discretized advection equation should yield a
system of the form:

~un+1 − ~un =

∫ tn+1

tn

~f(t, ~u(t))dt '
Δt

2
(~fn+1 + ~fn) (9)

where the vectors~un+1 and~fn+1 representun+1
i = u(tn+1, xi) andfn+1

i = f(tn+1, u
n+1
i)

on the gridpoints{xi}. This system is implicit, astn+1 appears on both sides of the
equations. One may use self-consistent iteration to solve this system in each time-step,
as done in Eq. (6) earlier. Alternatively, because the advection equation is linear, Eq. (9)
is linear in the unkown quantities~un+1. Thus, you may analytically solve this system (or
use a Pad́e method) to express~un+1 in terms of the known quantities~un.

5

Question 4. [10 marks] Generating random numbers.
For the probability distributions detailed below, construct functions to obtain random numbers
from these distributions, and test these functions by creating histograms from a sufficient
number of samples and plotting the histograms together with the corresponding distribution
functions. You are allowed to use anyuniformnumber generator. Use of off-the-shelf
generators for non-uniform distributions will lead to half marks.

(a) Uniform distribution over the interval[−2π, π]. [2]

(b) Uniform distribution over the union of the three intervals[1, 2] ∪ [3, 4] ∪ [5, 6]. [2]

(c) Gaussian distribution with a given mean valueμ and varianceσ2. Use the inverse CDF
method, or the Box-Muller method, or the Marsaglia polar method, or another method
of your choice, and test your function by sampling from a Gaussian withμ = 12 and
σ2 = 3. [Half marks awarded if you use an off-the-shelf function like the Mathematica
built-in functionNormalDistribution[μ, σ].] [2]

(d) Continuous distribution with probability density function:

f(x; λ) = λe−λx

for x ≥ 0, whereλ is a parameter provided by the user. Test your function by sampling
from the three distributions obtained by settingλ respectively equal to0.7, 1.5, and3.5. [2]

(e) Continuous distribution with cumulative density function:

F (x) =
1

6

(
x2 + x

)

for x ∈ [0, 2]. [2]

Question 5. [10 marks] Simple sampling.
The Monte-Carlo estimate of an integral is a random variable, whose mean value approaches
the real value of the integral as the number of samples tends to infinity. Write a module that
implements a mean-value Monte-Carlo estimate of the integral

I =

∫ 1

0

x3(1 − x)1/2dx =
32

315

which is the value of the Euler Beta function:

B(a, b) =

∫ 1

0

xa−1(1 − x)b−1dx

for a = 4 andb = 3/2.

(a) Run the code forN = 10n, n = 1, 2, 3, ... uniform random numbers in[0, 1], and obtain
the sequence of Monte-Carlo estimatesI1, I2, I3, [3]

(b) Compute the sequence of absolute errorsEn = |I − In| and show that the estimateIn of I
improves when the numberN of samples increases. [3]

(c) Compute and plot the varianceσ2 of the Monte-Carlo estimates as a function ofn. How
does the variance change when your estimate is based on more samples? [4]

6

Part B: Programming Project and Report [45 marks]

Answeroneof the following questions.

Question 6. [45 marks] Hyperboloidal wave equation.

(a) Consider the hyperboloidal wave equation

− (1 + x)∂2
t ψ + (1− 2x2)∂x∂tψ + (1− x)x2∂2

xψ − 2x ∂tψ + x(2− 3x)∂xψ = 0, (10)

for the scalar functionψ(t, x), with initial dataψ(0, x) = f(x), ψ̇(0, x) = − x2

1+x
f ′(x)

for some chosen functionf(x), in the domainx ∈ [0, 1]. You may assume that
f(x) = e−α[β−ln(1−x)]2 , with α = 220 andβ = −2/3. Show that
ψanalytical(t, x) = e−α[β−t−ln(1−x)]2 satisfies Eq. (11). (You may use computer algebra to
show this analytically). The above wave equation is second order in space and time.
Define an auxiliary variableπ = ∂tψ + b(x)∂xψ and use it to reduce the wave equation

to a system fullyfirst order in time and space, of the form∂tu = L̂ u, whereu =

(
ψ
π

)

andL̂ =

(
L̂1 L̂2

L̂3 L̂4

)

is a matrix of spatial differentiation operators. What are the values

of b(x) that eliminate∂2
xψ terms from the equation? What are the operatorsL̂1, . . . , L̂4? [2]

(b) Write a program that uses the method of lines to evolve the first order reduced wave
equation. Use a pseudo-spectral method for spatial discretization (for a Chebyshev
collocation method, the differentiation matrices are given in Question 1). Use an
explicit Runge-Kutta method (or equivalent Taylor method) for time integration.
Explain how your programme works. Plot the solutionunumerical(t, x) and the error
δu(t) = unumerical(t, x) − uanalytical(t, x) as a function ofx at different instants of timet.
What happens if the time-step exceeds the Courant limit? [10]

(c) Plot the energy errorδE(t) = E(t) − E(0) as a function of timet, where

E =

∫ 1

0

dx

[

(1 + x)(∂tψ)2 + x2(1 − x)(∂xψ)2

]

. (11)

is the energy. Is energy conserved numerically? Why?
Hint : if using a Chebyshev collocation method with the grid-points of Question 1, you
may use the Clenshaw-Curtis quadrature rule from Coursework 1 to calculate the energy
integral.

Hint : stop evaluating the energy before the wave reaches the boundaries, otherwise you
will observe energy loss as the pulse exits the domain. [8]

(d) Repeat (b) and (c) using an implicit method (such as the trapezium or Hermite rule) for
time integration. What happens if you increase the time-step? Is energy conserved
numerically? Why? [10]

7

Hint : the trapezium rule applied to the discretized advection equation should yield a
system of the form:

~un+1 − ~un =

∫ tn+1

tn

~f(t, ~u(t))dt '
Δt

2
(~fn+1 + ~fn) (12)

where the vectors~un+1 and~fn+1 representun+1
i = u(tn+1, xi) andfn+1

i = f(tn+1, u
n+1
i)

on the gridpoints{xi}. This system is implicit, astn+1 appears on both sides of the
equations. One may use self-consistent iteration to solve this system in each time-step,
as done in Eqs. (6) and (9) earlier. Alternatively, because the wave equation is linear,
Eq. (13) is linear in the unkown quantities~un+1. Thus, you may analytically solve this
system (or use a Padé method) to express~un+1 in terms of the known quantities~un.

(e) Write a report describing the two different time evolution methods and details of your
implementation. Compute the Courant limit for the method in parts (b) and (d). What
happens if the time step is too large? Reflect on the relative strengths and weaknesses of
these methods. Back up your conclusions with evidence from specific data such as
number of time-steps needed and total run times. [15]

8

Question 7. [45 marks] Black-Scholes equation.
Consider the Black-Scholes equation

∂c(t, s)

∂t
+

1

2
s2σ2 ∂2c(t, s)

∂s2
+ rs

∂c(t, s)

∂s
− rc(t, s) = 0

with terminal and boundary conditions

c(T, s) = max(s − k, 0)

c(t, 0) = 0

wherec is the price of the option as a function of stock prices > 0 and timet ∈ [0, T], r is the
risk-free interest rate,σ is the volatility of the stock andk is the strike price of the call. In their
Nobel-prize winning paper, Black and Scholes noted that, by a transformation of variables
c = uert, t = T − τ , s = ex−(r−σ/2)τ , their equation can be reduced to a linear diffusion
equation

∂u(τ, x)

∂τ
=

1

2
σ2 ∂2u(τ, x)

∂x2

with initial conditionu(0, x) = e−rT max(0, ex − k) and boundary conditionu(τ, x) ≈ 0 for
x → ∞. [Hint : you may use the Wolfram Language command given in Q7a below to check
and implement exact boundary conditions if needed].

For this programming project, you will solve the Black-Scholes equation numerically and
determine the price of an option.

(a) Use finite differencing and an explicit time integration method (such as Runge-Kutta) to
solve the Black-Scholes equationor the diffusion equation via the numerical method of
lines. Plot the solutionc(t, s) as a function ofs ∈ [10, 50] for
k = 50, σ = 0.1, T = 1, r = 0.04 for different timest ∈ [0, T]. Evaluate the solution for
t = 0, s = 50. How does your result compare to that returned via the following Wolfram
Language command?

FinancialDerivative[{"European", "Call"},
{"StrikePrice" -> 50.00, "Expiration" -> 1},
{"InterestRate" -> 0.04, "Volatility" -> 0.1,
"CurrentPrice" -> 50}] [15]

(b) Repeat (a) using an implicit time integration method, such as the trapezium or Hermite
rule. [15]

(c) Write a report describing the two different time evolution methods and details of your
implementation. Compute the Courant limit for the method in part (a) and (b). What
happens if the time step is too large? Reflect on the relative strengths and weaknesses of
these methods. Back up your conclusions with evidence from specific data such as
number of time-steps needed and total run times. [15]

End of Paper.

9

