Main Examination period 2023 - May/June - Semester B

MTH6158: Ring Theory

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: F. Rincón, A. Fink

Question 1 [30 marks].

(a) Give an example of a non-commutative ring without an identity.
(b) Does the equation $(1+a)(1-a)=1-a^{2}$ hold for any element a of a ring with identity? Explain.
(c) Give an example of a subring of $\mathbb{Z} / 14 \mathbb{Z}$ having 4 elements, or explain why it does not exist.
(d) Prove, using the axioms of a ring or the basic properties proved in the lectures, that any two elements a, b of a ring satisfy the equation $(-a) b=-(a b)$.
(e) Give an example of a commutative ring without identity having a subring with identity, or explain why such an example cannot exist.
(f) Explain what is wrong in the following "proof" that every finite commutative ring with identity is a field.
"Proof": Suppose R is a finite commutative ring with identity. Let a be a non-zero element of R. We want to show that there exists an inverse of a in R, that is, an element b such that $a b=b a=1$. Consider the set $S=\left\{a, a^{2}, a^{3}, \ldots\right\}$. Since R is finite, this set S must be finite. This means that there exist positive integers $m>n$ such that $a^{m}=a^{n}$. We then have $a^{m-n}=1$, which means that the element a^{m-n-1} is a multiplicative inverse of a. Thus every non-zero element of R has an inverse, and therefore R is a field.

Question 2 [20 marks]. Consider the ring $R=\mathbb{Z} / 15 \mathbb{Z}$ and its ideal $I=\left\{[0]_{15},[3]_{15},[6]_{15},[9]_{15},[12]_{15}\right\}$. [You are not required to prove that I is an ideal of R.]
(a) Is the ideal I a ring with identity? Explain.
(b) Write down explicitly the partition of R into cosets of I.
(c) Give an explicit isomorphism between the rings $\mathbb{Z} / 3 \mathbb{Z}$ and R / I. [You do not need to prove that it is an isomorphism.]
(d) Does the equation $x^{3}+x^{5}+x^{7}=1$ have a solution in the ring R / I ? Explain.

Question 3 [30 marks].

(a) Give an example of a domain R and an element $a \in R$ that is neither a unit nor a zero-divisor.
(b) For which integers $m \geq 2$ does the ring $\mathbb{Z} / m \mathbb{Z}$ satisfy the cancellative law for multiplication? Explain.
(c) Consider the subring $S=\{a+b \sqrt{3}: a, b \in \mathbb{Z}\}$ of the ring \mathbb{R} of real numbers.
(i) Explain why S is an integral domain.
(ii) Show that the element $2+\sqrt{3}$ is a unit of S.
(iii) Find a factorisation of the element $6 \in S$ as a product of two elements of S that are not in \mathbb{Z}.
(iv) Given that the element $6 \in S$ can also be factored as $6=2 \cdot 3$, can we conclude that S is not a unique factorisation domain? Explain.
(d) Suppose R is a domain and $a \in R$ is a non-zero element satisfying $a^{3}=a$. Show that a is either a unit or a zero-divisor.

Question 4 [20 marks]. Consider the field of 2 elements $K=\mathbb{Z} / 2 \mathbb{Z}$ and the polynomial $f=x^{3}+x+1 \in K[x]$.
(a) Explain why f is an irreducible element of $K[x]$.
(b) Let F be the quotient ring $F=K[x] /\langle f\rangle$, which contains the field K.
(i) Explain why F is a field. [You may use any result proved in the lectures.]
(ii) How many elements does the field F have?
(iii) Let α be an element of F such that $f(\alpha)=0$. Find an expression for the inverse α^{-1} of the form $\alpha^{-1}=a \cdot \alpha^{2}+b \cdot \alpha+c$ with $a, b, c \in K$.

End of Paper.

(C) Queen Mary University of London (2023)

