Recent Modules	A .	0

MTH6113 - MATHEMATICAL TOOLS FOR ASSET MANAGEMENT - 2021/22

🖈 > Courses > Science and Engineering > MTH6113 - Mathematical Tools for Asset Management - 2021/22 > Assessments > Semester B final assessment > Preview

YOU CAN PREVIEW THIS QUIZ, BUT IF THIS WERE A REAL ATTEMPT, YOU WOULD BE BLOCKED BECAUSE:

This quiz is not currently available	
INFORMATION	
Problem 1 (consists of questions 1-2)	
Do the following statements contradict the semi-strong form of the efficient market hypothesis?	
Answer yes/no and then briefly explain your reasoning with no more than 50 words.	
QUESTION 1	Not yet answered Marked out of 5.00
Today's returns are positively correlated with tomorrow's returns.	
	<i>"</i>
QUESTION 2	Not yet answered Marked out of 5.00
By taking a higher risk, we can achieve a higher expected return.	
	//

Recent Modules **QUESTION 3** Not yet answered Marked out of 5.00 Problem 2 (consists of question 3 only) One of the following figures shows the empirical returns of a stock since 1993. The other figure shows simulated returns using the lognormal model with parameters fitted to the empirical data. Figure 1: 0.06 0.04 ٥ -0.02 -0.04 -0.06 21/05/2003 21/05/2005 Figure 2: 0.06 -0.02 -0.04 -0.06 Complete the following statements, such that they are true. The daily return shown in Figure 1 Choose... The daily returns shown in Figure 2 Choose...

INFORMATION Problem 3 (consists of questions 4 - 7) For the next questions, the following investment opportunities are given based on their mean return μ and their standard deviation of the return σ : Asset 1 $\mu_1 = 10\%$ $\sigma_1 = 5\%$ $\mu_2 = 15\%$ $\sigma_2 = 7\%$ Asset 2 Asset 3 μ₃ = 15% $\sigma_3 = 6\%$ Asset 4 $\mu_4 = 20\%$ $\sigma_4 = 10\%$ Asset 5 μ₅= 20% $\sigma_5 = 7\%$

	Receilt Modules	4 9	<u> </u>
QUESTION 5		Not yet answered	Marked out of 2.00
Does the following pairwise dominance hold?			
$(\mu_3,\sigma_3)>(\mu_2,\sigma_2)$			
Select one: True			
O False			
QUESTION 6		Not yet answered	Marked out of 5.00
Let also the correlation between Asset 2 and Asset 4 be given as ρ_{24} = -0.25. Construct Asset 6 as the portfolio with equal parts in Assets 2 and	4.		
Compute the standard deviation of the returns of Asset 6.			
(state the answer in decimals with four digits after the decimal point)			
Answer:			
QUESTION 7		Not yet answered M	arked out of 10.00
We note that Asset 6 now dominates Asset 2, even though Asset 4 does not dominate Asset 2. Use this example to explain the benefits of dive	rsification.		
INFORMATION			
Problem 4 (consists of questions 8 to 10)			
We consider the lognormal model with returns modelled as $X \sim \mathcal{N}(\mu, \sigma^2)$.			
Let $\mu=0.04$ and $\sigma=0.25$. We denote the density function of X as f_X and the distribution function of X as F_X (with the inverse F_X^{-1}).			
QUESTION 8		Not yet answered 1	Marked out of 7.00
Which of the following values equals to the value at risk VaR _{99%} (X)?			
○ a1/f _X (0.01) ≈ -0.6312			
○ a. $-1/f_X(0.01) \approx -0.6312$ ○ b. $1/f_X(0.99) \approx -856.3200$			
○ c. $-F_{X}^{-1}(0.01) \approx 0.5416$			
○ d. $F_X^{-1}(0.99) \approx 0.6216$			

	Recent Modules		•	<u>?</u>
QUESTION 9		Not yet answ	vered	Marked out of 5.00
Which of the following scaling properties holds for any random variable X and $\alpha \in (0,1)$?				
Select one:				
$\bigcirc \text{ a. } \operatorname{VaR}_{\alpha}(2X) = \operatorname{VaR}_{\alpha}(X) + 1$				
\bigcirc b. $VaR_{0.5\alpha}(X) = 0.5 VaR_{\alpha}(X)$				
$\bigcirc \text{ c. } \operatorname{VaR}_{\alpha}(X+1) = \operatorname{VaR}_{\alpha}(X) + 1$				
$\bigcirc d. \operatorname{VaR}_{\alpha}(2X) = 2\operatorname{VaR}_{\alpha}(X)$				
\bigcirc e. $\operatorname{VaR}_{\alpha+1}(X) = \operatorname{VaR}_{\alpha}(X) + 1$				
$ Of. VaR_{0.5\alpha}(X) = VaR_{\alpha}(X) - 1 $				
\bigcirc g. $VaR_{0.5a}(2X) = VaR_{\alpha}(X)$				
QUESTION 10		Not yet answ	ered N	Marked out of 10.00
Explain your choice in one paragraph.				
QUESTION 11		Not yet answ	ered 1	Marked out of 10.00
Problem 5 (consists of questions 11 only)				
Consider N assets in Sharpe's Single-Index model with $\mu_0=0$, $\alpha_i=0$, $\beta_i=1$, $\sigma_i=1$, $i=1,\ldots,N$, i.e. the asset returns are given as				
$R_i = R_M + \varepsilon_i, i = 1, \dots, N$				
with $R_{ m M}\sim \mathcal{N}(\mu_{ m M},\sigma_{ m M}^2)$ and $\epsilon_i\sim \mathcal{N}(0,1)$ pairwise independent.				
Consider a portfolio P with equal weights of each asset, i.e.				
$R_{\rm P} = \sum_{i=1}^{N} R_i/N.$				
We note that				
$\mathbb{E}(R_{\mathrm{I}}) = \mathbb{E}(R_{\mathrm{P}}) = \mu_{\mathrm{M}}$				
and				

 $\operatorname{Var}(R_i) = \sigma_{\mathrm{M}}^2 + 1$

 $\text{Var}(R_{\text{P}}) = \sigma_{\text{M}}^2 + 1/N$

For a large number of assets N, use this result to explain the concepts of

- diversifiable risks,
- non-diversifiable risks.

(respond in 2-4 sentences)

INFORMATION

Problem 6 (consists of questions 12 to 15)

Consider a market where all assumptions of the CAPM (Capital Asset Pricing Model) hold with an interest rate $\mu_0=3\%$. The expected return of the market portfolio is $\mu_{\mathrm{MP}}=8\%$ and its standard deviation is $\sigma_{\rm MP}=6\%.$

Consider an efficient portfolio P with $\beta=0.5$.

	Recent Modules	4 9		?
QUESTION 12		Not yet answe	red Marked	out of 4.00
How is the portfolio constructed?				
(use no more than 50 words)				
QUESTION 13		Not yet answe	red Marked	out of 4.00
Compute the expected return μ_P of the portfolio. (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5% should be input as 0.015)				
Answer:				
QUESTION 14		Not yet answe	red Marked	out of 5.00
Now consider a second portfolio P' (not necessarily efficient) with $\beta = 1.2$. Which of the following statements is true?				
•				
\bigcirc a. $\mu_{\mathrm{P'}}=9\%$				
\odot b. $\sigma_{\mathrm{p'}}=7.2\%$				
\odot c. $\mu_{\mathrm{P'}}=3\%$				
\odot d. $\sigma_{p'} \leq 7.2\%$				
QUESTION 15		Not yet answe	red Marked	out of 8.00
QUESTION 15 Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp	oute the standard devi			
-	oute the standard devi			
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Composite return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015)	oute the standard devi			
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp	oute the standard devi			
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Composite return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015)	oute the standard devi			
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Compositive return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer:	oute the standard devi			
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu-7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION	oute the standard devi		mal portfolic).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Composite return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18)	oute the standard devi	ation of this opti	mal portfolic).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18) QUESTION 16 Let two lotteries be given:	oute the standard devi	ation of this opti	mal portfolic).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18) QUESTION 16 Let two lotteries be given: $L_{-1} = \begin{cases} 100 & \text{with probability } 50\% \\ -90 & \text{with probability } 50\%. \end{cases}$ and	oute the standard devi	ation of this opti	mal portfolic).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18) QUESTION 16 Let two lotteries be given: $L_{\perp}1 = \begin{cases} 100 & \text{with probability } 50\% \\ -90 & \text{with probability } 50\%. \end{cases}$	oute the standard devi	ation of this opti	mal portfolic).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18) QUESTION 16 Let two lotteries be given: $L_{-1} = \begin{cases} 100 & \text{with probability } 50\% \\ -90 & \text{with probability } 50\%. \end{cases}$ and $L_{-2} = \begin{cases} 100 & \text{with probability } 25\% \\ 10 & \text{with probability } 50\% \end{cases}$ with probability 50%	oute the standard devi	ation of this opti	mal portfolic).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18) QUESTION 16 Let two lotteries be given: $L_{-1} = \begin{cases} 100 & \text{with probability } 50\% \\ -90 & \text{with probability } 50\% \end{cases}$ and $L_{-2} = \begin{cases} 100 & \text{with probability } 50\% \\ 10 & \text{with probability } 50\% \\ -90 & \text{with probability } 50\% \end{cases}$ Which lottery does a risk-averse investor strictly prefer and why? Fill the gaps in the following text: Using the	oute the standard devi	ation of this opti	mal portfolic).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18) QUESTION 16 Let two lotteries be given: $L_{-1} = \begin{cases} 100 & \text{with probability } 50\% \\ -90 & \text{with probability } 50\%. \end{cases}$ and $L_{-2} = \begin{cases} 100 & \text{with probability } 50\% \\ 10 & \text{with probability } 50\%. \end{cases}$ Which lottery does a risk-averse investor strictly prefer and why? Fill the gaps in the following text: Using the	oute the standard devi	ation of this opti	mal portfolic).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18) QUESTION 16 Let two lotteries be given: $L1 = \begin{cases} 100 & \text{with probability } 50\% \\ -90 & \text{with probability } 50\%. \end{cases}$ and $L2 = \begin{cases} 100 & \text{with probability } 25\% \\ 10 & \text{with probability } 25\%. \end{cases}$ Which lottery does a risk-averse investor strictly prefer and why? Fill the gaps in the following text: Using the	oute the standard devi	ation of this opti	mal portfolic).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18) QUESTION 16 Let two lotteries be given: $L1 = \begin{cases} 100 & \text{with probability } 50\% \\ -90 & \text{with probability } 50\%. \end{cases}$ and $L2 = \begin{cases} 100 & \text{with probability } 50\% \\ 10 & \text{with probability } 25\%. \end{cases}$ Which lottery does a risk-averse investor strictly prefer and why? Fill the gaps in the following text: Using the of the utility function u, we can show that $u(10) \ge u(5) > u(100) + u(-90)/2$. Therefore we can show that $\mathbb{E}(u(L2)) > \mathbb{E}(u(L1))$	oute the standard devi	ation of this opti	mal portfolic).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18) QUESTION 16 Let two lotteries be given: $L_{-1} = \begin{cases} 100 & \text{with probability } 50\% \\ -90 & \text{with probability } 50\%. \end{cases}$ and $L_{-2} = \begin{cases} 100 & \text{with probability } 50\% \\ 10 & \text{with probability } 25\%. \end{cases}$ Which lottery does a risk-averse investor strictly prefer and why? Fill the gaps in the following text: Using the		ation of this opti	mal portfolio).
Consider a third portfolio, which optimises risk and return for your personal risk appetite, by maximising the function $\exp(\mu - 7\sigma^2)$. Comp (Note: return the result in its decimal form with three digits after the decimal point. E.g. 1.5\% should be input as 0.015) Answer: INFORMATION Problem 7 (consists of question 16 to 18) QUESTION 16 Let two lotteries be given: $L1 = \begin{cases} 100 & \text{with probability } 50\% \\ -90 & \text{with probability } 50\%. \end{cases}$ and $L2 = \begin{cases} 100 & \text{with probability } 50\% \\ 10 & \text{with probability } 25\%. \end{cases}$ Which lottery does a risk-averse investor strictly prefer and why? Fill the gaps in the following text: Using the of the utility function u, we can show that $u(10) \ge u(5) > u(100) + u(-90)/2$. Therefore we can show that $\mathbb{E}(u(L2)) > \mathbb{E}(u(L1))$		ation of this opti	mal portfolio).

		кес	ent Modules	4 9	8
QUESTION 17			1	Not yet answered Marl	ked out of 4.00
Which of the given functions 1-4 is a utility fur	nction for risk-seeking investors? Briefly explain you	r choice in the next question.			
$0 1. u_1(x) = \exp(x) - 1$					
$\bigcirc 2. u_2(x) = \log(x-1)$					
$\bigcirc \ 3. \ u_3(x) = x^4$					
$\bigcirc 4. u_4(x) = \sqrt{ x }$					
QUESTION 18			1	Not yet answered Marl	ked out of 5.00
Briefly explain your choice using no more that	n 100 words.				
					//
 	Jump to		Seme	ster B re-sit assignme	nt (hidden) ▶
Help & Support	QMplus Media	QMplus Hub		QMplus Arch	nive