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Question 1 [18 marks]. Sam is considering an investment in the shares of Derby
Industries Inc but does not know much about the company. In a personal finance blog
Sam reads that the author believes the current Derby Industries share price of $23 per
share accurately reflects the company’s balance sheet and cashflow. Therefore Sam uses
a stochastic process, Xt to model the share price where t is measured in days. The
model used is

Xt = 23 +Wt

where Wt is a standard Wiener Process.

(a) Find the value of E[Xt] for t ≥ 0. [2]

(b) Determine whether Xt is a martingale with respect to its natural filtration. [4]

(c) What is the probability that the share price will be between $22 and $24 after 5
days under this model? [4]

(d) What are the weaknesses of this model when evaluating the risk of investing in
Derby Industries shares? [8]

Question 2 [22 marks]. Consider the following stochastic differential equation

dXt = Ytdt+ zWt

where Yt is a stochastic process, z is a constant and Wt represents standard Brownian
Motion.

(a) Write down Ito’s lemma for f(Xt, t) where f is a suitable function. [3]

(b) Determine df(Xt, t) where f(Xt, t) = e2tXt , simplifying your answer where
possible. [3]

(c) If Yt is replaced with a constant y, what function g(Xt, t) is required such that the
application of Ito’s lemma leads to g(Xt, t) representing Geometric Brownian
Motion? [1]

(d) State the probability distribution that Xt follows under the function in (c) above. [3]

(e) If y = 0.052, z = 0.149 and X0 = 150, find a 95% confidence interval for X15. [5]

(f) If Xt is to be used to model the value of an equity portfolio, how realistic is it to
use a constant y rather than a stochastic process Yt? [7]
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Question 3 [15 marks]. A European call option, with value ct at time t, is written
on a non-dividend paying stock, with price St at time t. The call option matures at
time T and the strike price is K. The continuously compounded risk-free rate is r.

A portfolio contains one call option and Ke−(T−t)r cash.

(a) Prove that, at time T , the value of the portfolio will always be greater than or
equal to the value of the share, ST . [3]

(b) State the upper and lower bound for the value of the call option, ct. [4]

The prices of a stock follow a geometric Brownian motion with parameters
µ = 0.3 and σ = 0.2. Presently, the stock’s price is £50. Consider a call option
having nine months until its expiration time and having a strike price of £45.

(c) What is the probability that the call option will be exercised? [4]

(d) If the interest rate is 3%, find the price of the call option using the Black-Scholes
formula. [4]

Question 4 [25 marks]. A short rate of interest is governed by the Vasicek model,
i.e.

drt = −a(rt − µ)dt+ σdBt

where Bt is a standard Brownian motion and a, µ > 0 are constants.

A stochastic process {Xt : t ≥ 0} is defined by Xt = eat+b · rt, where b is a constant.

(a) Derive an equation for dXt. [5]

(b) Solve the equation to find Xt. [5]

(c) Prove that:

rt = µ+ (r0 − µ)e−at + σ

∫ t

0

ea(s−t)dBs.

[5]

(d) Determine the probability distribution of rt and the limiting distribution for large
t. [5]

(e) Derive, in the case where s < t, the conditional expectation E[rt|Fs], where
{Fs : s ≥ 0} is the filtration generated by the Brownian motion Bs. [5]
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Question 5 [20 marks]. A credit analyst wishes to model the probability that a
bond issued by a shipping company defaults, using a time varying default transition
intensity λ(t).

(a) Draw diagram representing a two-state model that could be used in this scenario. [2]

The credit analyst uses a quadratic form for the default transition intensity

λ(t) =
2 + 10t− t2

300

where 1 ≤ t ≤ 10.

(b) Calculate the probability that the bond does not default between times 2 and 6. [6]

(c) Explain how the model could be modified to allow for the default transition
intensity to depend on economic growth as well as time. [6]

A credit rating agency has given the bond a B rating.

(d) Explain how the two-state model could be extended to use information from the
credit rating agency including how default transition intensities are estimated. [6]

End of Paper.
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