Main Examination period 2023 - May/June - Semester B

MTH6105 / MTH6105P: Algorithmic Graph Theory

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: F. Fischer, V. Latora

You may use any result from lecture notes and exercises without proving it, but you must state clearly which result you use.

Question 1 [$\mathbf{2 4}$ marks]. Let G be the graph given by the following drawing.

(a) Draw the induced subgraph of G on vertex set $\{a, d, e, f, g, h\}$.
(b) Draw a subgraph of G that is isomorphic to the graph H with

$$
\begin{equation*}
V(H)=\{r, s, t, u, v, w, x, y, z\} \text { and } E(H)=\{r s, r t, r u, s t, s v, t w, u x, v y, w z\} . \tag{4}
\end{equation*}
$$

(c) Draw a spanning tree of G whose set of leaves is $\{a, b, g, j\}$, or explain why such a spanning tree does not exist.

Call a cycle of a graph H a Hamiltonian cycle of H if it contains every vertex of H.
(d) Give a Hamiltonian cycle of G, or explain why such a cycle does not exist.

Let G be an arbitrary simple graph, $n=|V(G)|$, and $m=|E(G)|$.
(e) Assume that the complement of G is connected. Show that $m \leq \frac{1}{2} n^{2}-\frac{3}{2} n+1$.

Question 2 [24 marks]. Let D be a directed graph.
(a) Assume that D is a directed acyclic graph. Prove or disprove that there exists a vertex $v \in V(D)$ such that $d_{D}^{+}(v)=0$.
(b) Assume that there exists a vertex $v \in V(D)$ such that $d_{D}^{+}(v)=0$. Prove or disprove that D must be a directed acyclic graph.

Consider the directed network (D, w) with $V(D)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$, $A(D)=\left\{v_{1} v_{3}, v_{1} v_{5}, v_{2} v_{4}, v_{2} v_{6}, v_{3} v_{2}, v_{3} v_{6}, v_{4} v_{6}, v_{5} v_{2}, v_{5} v_{3}\right\}$, and

$$
\begin{array}{lllll}
w\left(v_{1} v_{3}\right)=5, & w\left(v_{1} v_{5}\right)=4, & w\left(v_{2} v_{4}\right)=1, & w\left(v_{2} v_{6}\right)=3, & w\left(v_{3} v_{2}\right)=2, \\
w\left(v_{3} v_{6}\right)=5, & w\left(v_{4} v_{6}\right)=1, & w\left(v_{5} v_{2}\right)=7, & w\left(v_{5} v_{3}\right)=3 . &
\end{array}
$$

(c) Draw the network.
(d) Show that D is a directed acyclic graph.
(e) Use Morávek's algorithm to find a longest $v_{1}-v_{6}$-path of (D, w). Show your working and give the path and its length.

Question 3 [26 marks]. Consider the directed network (D, c) given by the following drawing, where each $\operatorname{arc} e \in A(D)$ is labeled by its capacity $c(e)$ and two vertices s and t have been identified.

(a) Use the Ford-Fulkerson algorithm to find a maximum $s-t$-flow of (D, c). Draw the residual network after each iteration of the algorithm, and give the size of the maximum flow.
(b) Use a cut to show that the flow you have found is indeed a maximum s - t-flow of (D, c).
(c) If the capacity of both of the arcs with capacity 9 was decreased to 6 , how would this affect the size of a maximum flow? Justify your answer.

Call a directed network (D, c) an $s-t$-bottleneck network, where $s, t \in V(D)$, if for every arc $u v \in A(D)$ there exists a minimum $s-t$-cut S of (D, c) with $u \in S$ and $v \notin S$.
(d) Give an efficient algorithm that determines, for a given directed network (D, c) with $c: A(D) \rightarrow \mathbb{N}$ and $s, t \in V(D)$, whether (D, c) is an $s-t$-bottleneck network. Explain briefly why the algorithm is correct and efficient.

Question 4 [26 marks].

(a) Give a tree T with $|V(T)|=7$ that has exactly two maximum matchings. Justify your answer.
(b) Let G be an acyclic graph with $V(G) \neq \emptyset$. Show that there exists $v \in V(G)$ with $d_{G}(v)=0$, or there exist $u, v \in V(G)$ with $u \neq v$ and $d_{G}(u)=d_{G}(v)=1$.
(c) Let T be a tree, M_{1} and M_{2} distinct maximum matchings of T. Show that $\left|M_{1}\right|+\left|M_{2}\right|<|V(T)|$.

Consider the tree T given by the following drawing.

(d) Find a maximum matching of T. Show your working.
(e) Give a set $X \subseteq\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ with $|X|>\left|N_{T}(X)\right|$, or explain why such a set does not exist.

