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You should attempt ALL questions. Marks available are shown next to the
questions.

In completing this assessment:

• You may use books and notes.

• You may use calculators and computers, but you must show your work-
ing for any calculations you do.
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to an exam question or to copy any solution you find.
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All work should be handwritten and should include your student number.

The exam is available for a period of 24 hours. Upon accessing the exam, you will
have 3 hours in which to complete and submit this assessment.
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• scan your work, convert it to a single PDF file, and submit this file using the
tool below the link to the exam;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

Please try to upload your work well before the end of the submission window, in case
you experience computer problems. Only one attempt is allowed – once you have
submitted your work, it is final.
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In this paper, V(G) denotes the set of vertices of a graph or digraph G, E(G) the set of
edges of a graph G, and A(G) the set of arcs of a digraph G. You may use any result
from lecture notes and exercises without proving it, but you must state clearly which
result you use.

Question 1 [24 marks].

(a) Give the Prüfer code of the following tree. [4]
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(b) Give the degree sequence of the tree with Prüfer code 6, 4, 3, 2, 1, 6, 4, 6. Show
your working. [6]

(c) Draw a tree with degree sequence 3, 3, 2, 2, 1, 1, 1, 1. [2]

(d) Show that any connected graph with degree sequence 3, 3, 2, 2, 1, 1, 1, 1 must be a
tree. [6]

(e) Give an efficient algorithm that, for any sequence d1, d2, . . . , dn that is the degree
sequence of a tree, constructs a particular tree with that degree sequence. Explain
briefly why the algorithm is correct and efficient. [6]
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Question 2 [22 marks]. Consider the network (G,w) with

V(G) = {u, a, b, c, d, e, f, g},

E(G) = {ua, ub, uc, ac, ad, af, bc, bg, cd, ce, df, eg, fg}, and

w(ua) = 6, w(ub) = 3, w(uc) = 1, w(ac) = 4, w(ad) = 2,

w(af) = 1, w(bc) = 1, w(bg) = 5, w(cd) = 1, w(ce) = 1,

w(df) = 4, w(eg) = 6, w(fg) = 1.

(a) Draw G. [2]

(b) Apply Dijkstra’s algorithm to (G,w) starting from vertex u. Give V(T) and E(T)
after each iteration of the algorithm. [10]

(c) For each v ∈ V(G), give the length of a shortest u−v-path in (G,w). Justify your
answer. [4]

(d) Show that the tree T obtained in Part (b) is the unique minimum spanning tree of
(G,w). [6]
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Question 3 [26 marks]. Consider the directed network (D, c) given by the
following drawing, where each arc e ∈ A(D) is labelled by its capacity c(e) and two
vertices s and t have been identified.
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(a) Use the Ford-Fulkerson algorithm to find a maximum s−t-flow of (D, c). Draw
the residual network after each iteration of the algorithm, and give the size of the
maximum flow. [14]

(b) Use a cut to show that the flow you have found is indeed a maximum s−t-flow of
(D, c). [6]

(c) If the capacity of exactly one of the arcs with capacity 4 was increased to 5, would
this affect the size of a maximum flow? Justify your answer. [6]
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Question 4 [28 marks].

(a) For each of the following graphs, state whether the graph is bipartite or not.
Justify your answers. [4]
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Consider the bipartite graph G given by the following drawing, where each vertex is
labelled with its name.

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

(b) Show that M = {u2v5, u3v4, u5v2, u6v1} is a matching of G. [2]

(c) Find a maximum matching of G. Show your working. [10]

(d) Use Hall’s theorem to show that the matching you have found is indeed a
maximum matching. [6]

Call a graph H regular if there exists k ≥ 1 such that dH(v) = k for all v ∈ V(H).

(e) Does there exist a regular graph H with V(H) = V(G) and E(H) ⊆ E(G)? Justify
your answer. [6]

End of Paper.
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