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In this exam, P(·) denotes a probability measure defined on a space (Ω,F ) and E(·)
denotes the expectation with respect to P.
Please look at the Appendix for probability density functions, quantiles and proba-
bilities of random variables.

Question 1 [24 marks]. Suppose that X and Y have joint density function fX,Y
given by

fX,Y(x, y) =

{
ce−2(x+y) if x > 0 and y > 0
0 otherwise

(a) Show that fX,Y is a valid probability density function if and only if c = 4. [6]

(b) Find the probability P(X < 2, Y < 3). [4]

(c) Find the marginal probability density function fX of X. [6]

(d) Calculate the conditional density function fY|X=x(y). [5]

(e) Are X and Y independent? Justify your answer. [3]

Question 2 [6 marks]. Let X be a Bin(4, 1
2) random variable. Find the probability

generating function of X. [6]

Question 3 [6 marks]. Suppose X1, X2, . . . , Xn are independent random variables
with moment generating functions MXi(t), i = 1, . . . , n. Find the moment generating
function of

Y =
n

∑
i=1

Xi

and justify all steps in your proof. [6]

Question 4 [9 marks]. Suppose that X1 and X2 have joint probability density
function

f (x1, x2) =

{
8x1x2, 0 < x1 < x2 < 2
0, otherwise.

What is the joint probability density function of Y1 = X1/X2 and Y2 = X2? [9]

c© Queen Mary University of London (2020)



MTH5129 (2020) Page 3

Question 5 [24 marks].

(a) A teacher wants to see the effect of changing how reading is taught to primary
school children. The children in Year 4 take a reading test at the end of the year.
In previous years the score has had a mean of 60 and a variance of 400 and was
normally distributed. After the change in teaching method 30 children took the
test and the sample mean was x̄ = 66 with a sample variance s2 = 225. The
teacher wants to know if changing the teaching method has affected the score
on the test.

Using a 5% significance level:

(i) test the null hypothesis that the variance is σ2 = 400 against a two-sided
alternative; [7]

(ii) test the hypothesis that the mean is µ = 60 against a two-sided alternative. [7]

(b) The following year two teachers want to compare two different methods of
teaching Mathematics in Year 6. Advise them how to carry out this comparison.
Include details on:

• how they could allocate children to the two teaching methods,

• what tests they should use to test their hypotheses,

• what assumptions these are based on,

• how the assumptions can be checked.

[10]

Question 6 [14 marks]. A company’s batteries have a mean lifetime of 10 hours.
To examine the hypothesis that the distribution of lifetimes has an exponential
distribution with mean 10 hours, the lifetimes of one hundred batteries were
recorded and are shown below.

Lifetime 0-4 4-8 8-12 12-16 16-20 20+
Number 28 23 16 13 10 10

(a) Assuming the lifetimes have an exponential distribution with mean 10, find the
probabilities that the lifetimes lie in the six classes 0-4, 4-8, ..., 20+. [4]

(b) Hence find the expected number in each class. [1]

(c) Give the formula for a test statistic to test the hypothesis and state its
distribution if the hypothesis is true. [3]

(d) Calculate the observed value of the test statistic. [2]

(e) Give the rejection region for a test with 5% significance level and make a
suitable conclusion. [2]

(f) Give the R command needed to find the P value of the test. [2]
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Question 7 [17 marks].

(a) Suppose {Z1, Z2, Z3, . . .} are independent random variables, each having a
standard normal distribution, that is with mean 0 and variance 1. Using the
random variables Z1, Z2, . . . write down functions of these random variables
having

(i) a chi-squared distribution with m degrees of freedom, [3]

(ii) a t distribution with n degrees of freedom, [3]

(iii) an F distribution with m and n degrees of freedom. [4]

(b) Name a method to simulate values from a standard normal distribution. [2]

(c) Suppose you wanted to estimate the Expectation of the largest value in a
sample of size N from a standard normal distribution. Suggest how you could
use simulated values to achieve this. [5]

End of Paper – An appendix of 1 page follows.
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Appendix: Probability density functions
A random variable X ∼ Bin(n, p) follows the binomial distribution with parameters
n ∈N and p ∈ [0, 1], if the probability of getting exactly k successes in n trials is
given by the probability mass function:

P(X = k) =
(

n
k

)
pk(1− p)n−k =

n!
k!(n− k)!

pk(1− p)n−k

for k = 0, 1, 2, ..., n.

A random variable X ∼ Exp(λ) has exponential distribution with parameter λ > 0 if
its probability density function is given by:

fX(x) =
{

λe−λx if x > 0
0 if x < 0

Appendix: R studio

You are given the following from R studio

> qchisq(0.025,29)

[1] 16.04707

> qchisq(0.975,29)

[1] 45.72229

> qchisq(0.025,30)

[1] 16.79077

> qchisq(0.975,30)

[1] 46.97924

> qchisq(0.95,29)

[1] 42.55697

> qchisq(0.95,30)

[1] 43.77297

> qt(0.975,30)

[1] 2.042272

> qt(0.975,29)

[1] 2.04523

> qt(0.95,30)

[1] 1.697261

> qt(0.95,29)

[1] 1.699127

> qchisq(0.95,4)

[1] 9.487729

> qchisq(0.95,5)

[1] 11.0705

> qchisq(0.95, 6)

[1] 12.59159

End of Appendix.
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