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Question 1. [18 marks]

(a) Rewrite the following linear program in standard inequality form:

minimise − 3x1 + 6x2 + 9x3 + 12x4

subject to x1 + x2 − x4 ≥ 3,

x1 + x2 − 3x4 ≤ 5,

3x1 + 2x2 + x3 = 9,

x1, x2 ≥ 0,

x4 ≤ 0,

x3 unrestricted [6]

(b) Now, consider an arbitrary linear program in standard equation form:

maximise cTx

subject to Ax = b,

x ≥ 0

with n variables and m constraints.

(i) Explain what it means for x ∈ Rn to be a basic feasible solution of this
linear program. [4]

(ii) Let y ∈ Rn and z ∈ Rn be two optimal solutions to this linear program and
let λ ∈ (0, 1) be a constant. Show that x = λy + (1− λ)z must also be an
optimal solution to this program. [8]
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Question 2. [18 marks] A clothing company produces two different types of shirts:
casual shirts, and dress shirts. Each shirt requires some amount of fabric (measured in
metres), buttons, and labour (measured in hours). The company has production lines
for producing each type of shirt separately. Additionally, the company has determined
that it can waste less fabric if it cuts parts for both types of shirts out of the same
length of cloth. It has developed a third production line for this method, which costs
slightly more labour.
The total amount of resources required and the number of shirts produced by using
each production line for one day is shown below:

Production Fabric Buttons Labour Casual Shirts Dress Shirts
Line Required Required Required Produced Produced

1 140 210 85 70 0
2 125 400 75 0 50
3 200 500 180 60 40

(a) Suppose that the company has only 1500 metres of fabric, 3500 buttons, and 1800
hours of labour available. It can sell an unlimited number of casual shirts for £45
each and an unlimited number of dress shirts for £65 each. It wants to know the
most revenue it can generate using only these available resources. Write a linear
program that models this problem (you do not need to solve this program). [10]

(b) Now suppose that the company has the same amount of resources available as in
part (b), and can still sell any number of casual shirts at a price of £45. However,
it has determined that its retailers can sell only up to 250 dress shirts at a price of
£65, and then up to 300 additional dress shirts at a discounted sale price of £39.
Again, the company wants to know the most revenue it can generate using only
its available resources. Write a linear program that models this optimisation
problem. [8]
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Question 3. [26 marks]

(a) Suppose that at some point when carrying out the standard simplex algorithm on
a linear program in standard equation form, you have the following current
tableau:

x1 x2 x3 x4 x5

x1 1 2 0 0 2 4
x3 0 −6 1 0 2 2
x4 0 8 0 1 0 3

0 −3 0 0 2 −8

(i) What basic feasible solution does this tableau correspond to? [4]

(ii) What is the objective value of this basic feasible solution? [2]

(iii) What is the entering variable and what is the leaving variable for the next
pivot operation? [4]

(iv) Give the next tableau produced by the simplex algorithm. [4]

(b) Suppose that while running the initial phase of the 2-phase simplex algorithm on
some linear program, you have the following current tableau (where a1 and a2 are
artificial variables):

x1 x2 x3 s1 s2 a1 a2
s1 −5 3 0 1 0 0 −3 15
a1 −6 3 0 0 −1 1 −1 6
x3 3 −2 1 0 0 0 1 1
−w −6 3 0 0 −1 0 −2 6
−z −16 15 0 0 0 0 −6 −6

(i) Finish running the first phase of the algorithm, giving the tableau for each
step. [8]

(ii) Say whether or not the linear program is feasible. If it is feasible, give the
initial tableau for the second phase. If it is not feasible, say why not. [4]
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Question 4. [20 marks]

(a) Give the dual of the following linear program:

maximise x1 + 2x2 + 3x3 + 4x4

subject to x1 − 2x2 + 6x3 + 7x4 ≤ 9,

x1 + 5x2 + 10x3 + 15x4 = 25,

x1, x2, x3, x4 ≥ 0 [8]

(b) State the strong duality theorem for linear programs. [4]

(c) Consider the following linear program:

maximise 6x1 + x2 + 2x3

subject to 3x1 + 3x2 + 2x3 ≤ 9,

x1 + 2x2 + x3 ≤ 4,

x1, x2, x3 ≥ 0

Show that x1 = 3, x2 = 0, x3 = 0 is an optimal solution of this linear program. [8]

Question 5. [18 marks]

(a) Consider a 2-player game with the following payoff matrix. Here, the row player’s
strategies are r1, r2, and r3 and the column player’s strategies are c1, c2, and c3.
As usual, the row player’s payoff is given first and the column player’s payoff is
given second in each cell.

c1 c2 c3
r1 (1, 2) (0, 1) (2, 3)
r2 (2, 0) (1, 2) (2, 1)
r3 (0, 1) (0, 1) (1, 2)

Does this game possess a pure Nash equilibrium? If so, list all pure Nash
equilibria for this game. [4]

(b) What does it mean for a 2-player game to be a zero-sum game? [3]

Now, consider the following zero-sum game. The row player and the column player each
simultaneously hold up 1 or 2 fingers. If the sum of the number of fingers both players
hold up is even, the row player wins. If the sum is odd, the column player wins. The
losing player pays the winning player an amount equal to the number of fingers the
winner held up.

(c) Give the payoff matrix for this game from the perspective of the row player. [5]

(d) Formulate a linear program that gives the row player’s optimal mixed strategy for
this game (you do not need to solve this program). [6]

End of Paper.
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