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Question 1 [23 marks]. Consider the curve

C =
{
(x, y) ∈ R2 | (x− 1)2 + 4(y+ 1)2 = 4},

and consider the following parametrisation of C:

γ : R → C, γ(t) = (1+ 2 cos t, −1+ sin t).

(a) Sketch the image of γ. [6]

(b) Find the unit normals to C at the point (1, −2). Draw and label these on
your sketch from part (a). [8]

(c) Assume C is also given the clockwise orientation. Compute the curve integral∫
C

F · ds,

where F is the vector field on R2 given by

F(x, y) = (−y, x)(x,y). [9]
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Question 2 [25 marks]. Consider the surface

S = {(x, y, z) ∈ R3 | (x+ z)2 + (y+ z)2 = 1, 0 < z < 2},

and consider the following parametrisation of S:

σ : R× (0, 2) → S, σ(u, v) = (−v+ cosu, −v+ sinu, v).

(a) Sketch the image of σ. Moreover, on your sketch, indicate (i) one path obtained
by holding v constant and varying u, and (ii) one path obtained by holding u

constant and varying v. [8]

(b) Find the tangent plane to S at the point (−1, 0, 1). [7]

(c) Compute the surface integral ∫∫
S

F dA,

where F is the real-valued function given by

F(x, y, z) =
1√

1+ (x+ z)(y+ z)
, where 1+ (x+ z)(y+ z) > 0. [10]
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Question 3 [20 marks]. Using the method of Lagrange multipliers, find the
minimum and maximum values of the function

f : R3 → R, f(x, y, z) = x+ z,

subject to the constraint
x2 + 4y2 + z2 = 4.

Also, at which points are these minimum and maximum values achieved? [20]
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Question 4 [18 marks].

(a) Give a parametrisation of the curve

P = {(x, y) ∈ R2 | x2 − 2xy = −4}

whose image contains the point (2, 2). [6]

(b) Is the following set connected:

E = {(x, y) ∈ R2 | 1 ≤ |x| ≤ 2}?

Briefly justify your answer. (You may draw E to aid in this.) [6]

(c) Consider the unit circle

C = {(x, y) ∈ R2 | x2 + y2 = 1}.

For each of the following parametrisations of C, state whether it generates the
anticlockwise or clockwise orientation of C:

(i) γ1 : R → C, where γ1(t) = (− cos t, sin t).
(ii) γ2 : (−1, 1) → C, where γ2(t) =

(
t,

√
1− t2

)
.

(iii) γ3 : (−1, 1) → C, where γ3(t) =
(√

1− t2, t
)
. [6]
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Question 5 [14 marks]. Consider the vector fields F and G on R3 given by

F(x, y, z) = (−y+ xz, x+ yz, 0)(x,y,z), G(x, y, z) = (−y, x, 2)(x,y,z).

(a) Show that ∇× F = G. [5]

(b) Let E be the half-sphere

E = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z > 0},

and suppose E is given the outward-facing (i.e. upward-facing) orientation. Apply
Stokes’ theorem and part (a) to show that∫∫

E
G · dA = 2π. [9]

End of Paper.
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