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There is a compendium of definitions and formulae in the appendix, which
you are free to use without comment.

Question 1. [22 marks] Let C be the curve

C = {(x, y) ∈ R2 | (x+ 3)2 + 4(y− 2)2 = 16}

and consider the following parametrisation of C:

γ : R → R2, γ(t) = (−3+ 4 cos t, 2+ 2 sin t).

(a) Find the curvature of C at the point (−3, 0). [6]

(b) Sketch the image of γ, and indicate the point (−3, 0) on your sketch. [5]

(c) At which points of C does its curvature achieve its maximum value? Justify
your answer(s) computationally. [4]

(d) Compute the curve integral ∫

C

F · ds,

where C has the clockwise orientation, and where F is the vector field given by

F(x, y) = (−y, x)(x,y), (x, y) ∈ R2. [7]

Question 2. [14 marks]

(a) Compute the tangent line at t = 0 to the parametric trefoil knot:

γ : R → R3, γ(t) = (sin t+ 2 sin(2t), cos t− 2 cos(2t),− sin(3t)). [5]

(b) Determine whether the following parametric curve is regular:

α : R → R2, α(t) = ((t− 1)3, (t− 1)2).

Justify your answer. [5]

(c) Give a parametrisation of the curve,

Q = {(x, y) ∈ R2 | x4 + (y+ 2)4 = 1},

that passes through the point (0,−1). Be sure to specify its domain. [4]
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Question 3. [23 marks] Let S denote the surface of revolution given by

S = {(x, y, z) ∈ R3 | x4 = y2 + z2, 0 < x < 2}

and consider the following parametrisation of S:

σ : (0, 2)× R → R3, σ(u, v) = (u, u2 cos v, u2 sin v).

(a) Compute the tangent plane to S at the point (1, 0, 1). [5]

(b) Sketch the image of σ. On your sketch, draw (i) a path obtained by holding v

constant and varying u, and (ii) a path obtained by holding u constant and
varying v. [6]

(c) Find another parametrisation of S that generates the opposite orientation to
the one generated by σ. Be sure to specify its domain. [4]

(d) Compute the surface integral ∫∫

S

HdA,

where H is the function

H : R3 → R, H(x, y, z) =
√
1+ 4x2. [8]

Question 4. [14 marks]

(a) Let f denote the following vector-valued function:

f : R2 → R2, f(x, y) = (xy2, x2y).

Find the directional derivative of f at the point (1, 1) and in the direction (−1, 2). [5]

(b) Explain (informally) why the surface integral of a real-valued function over a
Möbius band is well-defined, but the surface integral of a vector field over the
same Möbius band is not well-defined. [4]

(c) Show that the following set is a surface:

Z = {(x, y, z) ∈ R3 | x = y3 + z4}. [5]
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Question 5. [15 marks] Using the method of Lagrange multipliers, find the
maximum value of the function

g : R2 → R, g(x, y) = x2 + y2,

subject to the constraint
(x− 1)2 + (y+ 1)2 = 1.

Also, find all the points at which this maximum value is achieved. [15]

Question 6. [12 marks]

(a) Let C be the circle centred at the origin and having radius 2,

C = {(x, y) ∈ R2 | x2 + y2 = 4},

with the anticlockwise orientation. Use Green’s theorem to compute
∫

C

F · ds,

where F is the vector field on R2 given by

F(x, y) = (xex
2 ln(1+ x2)− 3y, 3x+ y18 sinhy cosy2)(x,y).

(You may use that the area of the inside of a circle with radius R is πR2.) [8]

(b) Let F be the vector field on R3 given by

F(x, y, z) = (x2z+ ey, z3y3x4, 1+ x3y2)(x,y,z).

Compute the divergence of F at each point (x, y, z) ∈ R3. [4]

End of Paper – An appendix of 3 pages follows.
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Partial list of definitions, theorems, and formulas

• Tangent vector: vp (p,v ∈ Rn)—arrow starting at p, pointing in direction v.
• Tangent space of Rn at p ∈ Rn: TpRn = {vp | v ∈ Rn}.
• Operations on tangent vectors (p,v,w ∈ Rn; c ∈ R):

vp + wp = (v + w)p, c · vp = (c · v)p, |vp| = |v|,
vp · wp = (v · w)p, vp × wp = (v × w)p.

• Vector field on A ⊆ Rn: function F mapping each p ∈ A to F(p) ∈ TpRn.
• Thm. The directional derivative of a smooth function g : U → Rn (U ⊆ Rm) at

the point p ∈ U and in the direction v = (v1, . . . , vm) ∈ Rm satisfies
dg(vp) = v1 · ∂1g(p) + · · ·+ vm · ∂mg(p).

• Gradient of f : U → R (U ⊆ Rm): vector field ∇f on U, with
∇f(p) = (∂1f(p), . . . ,∂mf(p))p.

• For a vector field F on U ⊆ Rm, with F(p) = (F1(p), . . . , Fm(p))p:
– Divergence of F at p ∈ U:

(∇ · F)(p) = ∂1F1(p) + · · ·+ ∂mFm(p).
– n = 3: curl of F at p ∈ U:

(∇× F)(p) = (∂2F3(p)− ∂3F2(p), ∂3F1(p)− ∂1F3(p), ∂1F2(p)− ∂2F1(p))p.
• Parametric curve: smooth γ : I → Rn (I: open interval).

– γ is regular iff |γ ′(t)| ̸= 0 for every t ∈ I.
• Informally, a curve C ⊆ Rn: (1) is described using regular parametric curves, (2)

is independent of parametrisation, and (3) is not self-intersecting.
• Parametrisation of curve C: any regular parametric curve γ : I → C.
• Thm. If g : U → R (U ⊆ R2) is smooth, with ∇g nonvanishing on U, then any

nonempty level set C = {(x, y) ∈ U | g(x, y) = c} (c ∈ R) is a curve. Also:
– ∇g(p) is perpendicular to TpC for each p ∈ C.
– Lagrange multipliers: If f : U → R is smooth, and if p ∈ C is a maximum or

minimum of f on C, then ∇f(p) = λ ·∇g(p) for some λ ∈ R.
• Thm. The graph {(t, f(t)) | t ∈ I} of any smooth f : I → R is a curve.
• Tangent line of:

– Regular parametric curve γ at t: Tγ(t) = {s · γ ′(t)γ(t) | s ∈ R}.
– Curve C at p: TpC = Tγ(t) (γ: parametrisation of C, with γ(t) = p).

• Orientation of curve C: smoothly varying choice of unit Tp ∈ TpC for all p ∈ C.
– A parametrisation γ generates an orientation via values |γ ′(t)|−1γ ′(t)γ(t).

• Oriented curve: roughly, a curve with a choice of orientation.
• Curvature of:

– Thm. Regular parametric curve γ : I → R2 at t:

κγ(t) =
|x ′(t)y ′′(t)− y ′(t)x ′′(t)|

|γ ′(t)|3
, γ(t) = (x(t), y(t)).
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– Thm. Regular parametric curve γ : I → R3 at t:

κγ(t) =
|γ ′(t)× γ ′′(t)|

|γ ′(t)|3
.

– Curve C at p: κC(p) = κγ(t) (γ: parametrisation of C, with γ(t) = p).
• Curve integral of real-valued function F, and arc length:

– Over parametric curve γ : (a, b) → Rn:∫

γ

F ds =

∫b

a

F(γ(t))|γ ′(t)|dt, L(γ) =

∫

γ

1 ds.

– Over curve C (γ: injective parametrisation of “almost all of” C):∫

C

F ds =

∫

γ

F ds, L(C) = L(γ).

• Curve integral of vector field F:
– Over parametric curve γ : (a, b) → Rn:∫

γ

F · ds =

∫b

a

[
F(γ(t)) · γ ′(t)γ(t)

]
dt.

– Over oriented curve C (γ: as before, and with matching orientation):∫

C

F · ds =

∫

γ

F · ds.

• Parametric surface: smooth σ : U → Rn (U ⊆ R2: open, connected).
– σ is regular iff ∂1σ, ∂2σ are everywhere linearly independent.
– Thm. n = 3: σ is regular iff |∂1σ× ∂2σ| ̸= 0 everywhere.

• Informally, a surface S ⊆ Rn: (1) is described using regular parametric surfaces,
(2) is independent of parametrisation, and (3) is not self-intersecting.

• Parametrisation of surface S: any regular parametric surface σ : U → S.
• Thm. If g : U → R (U ⊆ R3) is smooth, and if ∇g is nonvanishing on U, then any

nonempty level set S = {(x, y, z) ∈ U | g(x, y, z) = c} (c ∈ R) is a surface. Also:
– ∇g(p) is perpendicular to TpS for each p ∈ S.
– Lagrange multipliers: If f : U → R is smooth, and if p ∈ S is a maximum or

minimum of f on S, then ∇f(p) = λ ·∇g(p) for some λ ∈ R.
• Thm. The graph {(u, v, f(u, v)) | (u, v) ∈ U} of any smooth f : U → R is a surface.
• Tangent plane of:

– Parametric surface σ at (u, v):
Tσ(u, v) = {a · ∂1σ(u, v)σ(u,v) + b · ∂2σ(u, v)σ(u,v) | a, b ∈ R}.

– Surface S at p ∈ S: TpS = Tσ(u, v) (σ: parametrisation of S; σ(u, v) = p).
• Np is a unit normal to a surface S at p iff Np is normal to TpS and |Np| = 1.

– Thm. The unit normals to S at σ(u, v) (σ: parametrisation of S) are:

N±
σ (u, v) = ±

[
∂1σ(u, v)× ∂2σ(u, v)

|∂1σ(u, v)× ∂2σ(u, v)|

]

σ(u,v)

.

• Orientation of surface S: smoothly varying choice of unit normal Np at all p ∈ S.
– S is orientable iff an orientation of S exists.
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– A parametrisation σ generates an orientation via the values N+
σ (u, v).

• Oriented surface: roughly, a surface with a choice of orientation.
• Surface integral of real-valued function F, and surface area:

– Over regular parametric surface σ : U → R3:∫∫

σ

F dA =

∫∫

U

F(σ(u, v))|∂1σ(u, v)× ∂2σ(u, v)|dudv, A(σ) =

∫∫

σ

1 dA.

– Over surface S (σ: injective parametrisation of “almost all of” S):∫∫

S

F dA =

∫∫

σ

F dA, A(S) = A(σ).

• Surface integral of vector field F:
– Over regular parametric surface σ : U → R3:∫∫

σ

F · dA =

∫∫

U

{
F(σ(u, v)) · [∂1σ(u, v)× ∂2σ(u, v)]σ(u,v)

}
dudv.

– Over oriented surface S (σ: as before, and with matching orientation):∫

S

F · dA =

∫∫

σ

F · dA.

• Thm. Green’s theorem: (D ⊆ R2: open, bounded, boundary given by curves
C1, . . . , Ck.) For a smooth vector field F, with F(p) = (F1(p), F2(p))p,∫

C1

F · ds + · · ·+
∫

Ck

F · ds =

∫∫

D

[∂1F2(x, y)− ∂2F1(x, y)]dxdy.

(C1, . . . , Ck given the “positive”—left from outward normal—orientation.)
• Thm. Stokes’ theorem: (S ⊆ R3: oriented surface, boundary given by curves

C1, . . . , Ck.) For a smooth vector field F,∫

C1

F · ds + · · ·+
∫

Ck

F · ds =

∫∫

S

(∇× F) · dA.

(C1, . . . , Ck given the “positive” orientation from the chosen side of S.)
• Thm. Divergence theorem: (V ⊆ R3: open and bounded, with boundary given by

surfaces S1, . . . , Sk.) For a smooth vector field F,∫

S1

F · dA + · · ·+
∫

Sk

F · dA =

∫∫

V

(∇ · F)dxdydz,

(S1, . . . , Sk given the outward-facing orientation from V .)

End of Appendix.
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