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Question 1 [20 marks]. Let A, B, C be points in 3-space with respective position vectors

a =

1
0
1

, b =

−1
3
3

 , c =

 1
−3
3

. Determine:

(a) The length of the vector a+b+ c; [3]

(b) A unit vector in the direction of a; [3]

(c) a ·b; [3]

(d) a×b; [3]

(e) A vector equation for the line through A and B; [4]

(f) A Cartesian equation for the plane containing A, B and C. [4]

Solutions [All parts are routine calculations]:

(a) a+b+ c =

1
0
7

, which has length
√

1+ 0+ 49 =
√

50 = 5
√

2.

(b) a has length
√

2, so the unit vector in the direction of a is

1/
√

2
0

1/
√

2

.

(c) a ·b = −1+ 0+ 3 = 2.

(d) a×b =

−3
−4
3

.

(e) r = a+λ (b−a), λ ∈R, is such an equation, which in this case becomes

r =

1
0
1

+λ

−2
3
2

, λ ∈R.

(f) n = (b−a)× (c−a) =

−2
3
2

×
 0
−3
2

=

12
4
6

 is orthogonal to this plane, and

since A is contained in the plane then an equation for it is r ·n = a ·n = 18, which in
Cartesian form is 12x+ 4y+ 6z = 18, or alternatively 6x+ 2y+ 3z = 9.
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Question 2 [20 marks]. Let Π be the plane with equation 2x+ y+ z = 1, let l be the line

with equations x = y = z, and let Q be the point with position vector q =

0
1
2

.

(a) Determine the distance between the point Q and the plane Π. [4]

(b) Determine the coordinates of the point on Π that is closest to Q. [4]

(c) Determine the distance between the point Q and the line l. [4]

(d) Determine the point of intersection of the line l and the plane Π. [4]

(e) If l′ is the line in the direction orthogonal to Π and passing through Q, then determine
the distance between l and l′. [4]

Solutions: [All parts are fairly routine use of formulae from lectures and practiced on exercise
sheets; part (e) should be slightly more challenging]

(a) The vector n =

2
1
1

 is orthogonal to Π, so this distance (using the formula derived in

lectures) is |q ·n−1|/|n|= 2/
√

6 =
√

6/3.

(b) Using the formula from lectures, this closest point has position vector

q−
(

q ·n−1
|n|2

)
n =

0
1
2

− (1/3)

2
1
1

=

−2/3
2/3
5/3

 ,

so its coordinates are (−2/3,2/3,5/3).

(c) The line l has vector equation r = λu where u =

 1
1
1

, so the required distance is

|u×q|/|u| (a formula from lectures). Now u×q =

 1
−2
1

, so |u×q|=
√

6, and

|u|=
√

3, therefore the required distance is |u×q|/|u|=
√

6/
√

3 =
√

2.

(d) The point of intersection has coordinates (1/4,1/4,1/4).

(e) The line l′ has vector equation r = q+λn, so by a formula from lectures the required

distance is |q · (u×n)|/|u×n|. Now u×n =

 0
1
−1

, so |u×n|=
√

2, and

q · (u×n) = 1−2 = −1, so the required distance is |q · (u×n)|/|u×n|= 1/
√

2.
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Question 3 [10 marks].
Consider the linear system

2x1 + 3x2 + x3 + 4x4 = 1
2x1 + 3x2 + 4x3 + x4 = 0
2x1 + 3x2 − 2x3 + 7x4 = 2
2x1 + 3x2 + 4x3 − 2x4 = 1 .

(a) The augmented matrix of this system is: [3]

(b) After bringing the augmented matrix to row echelon form, the leading variables of the
reduced system are: [3]

(c) The solution set of the system is: [4]

Solutions [Similar to examples seen in lectures and on exercise sheets]:

(i) The augmented matrix of the system is
2 3 1 4 1
2 3 4 1 0
2 3 −2 7 2
2 3 4 −2 1

 .

(ii) The leading variables are x1, x3 and x4

(iii) We see that x4 = −1/3, and x3 = x4−1/3 = −2/3, and
x1 = −(3/2)x2− (1/2)x3−2x4 + 1/2 = −(3/2)x2 + 3/2, so the solution set is{

(−3
2

α +
3
2

, α ,−2
3

,−1
3
) : α ∈R

}
.

End of Paper.
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