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Question 1. [20 marks] Let A, B, C be points in 3-space with respective position vectors

a =




1
0
2


, b =




2
3
4


 , c =



−1
−3
−2


. Determine:

(a) The length of the vector 3a−b; [3]

(b) A unit vector in the direction of b; [3]

(c) a ·b; [3]

(d) a×b; [3]

(e) A vector equation for the line through A and B; [4]

(f) The coordinates of the point D such that ABCD is a parallelogram. [4]

Question 2. [20 marks] Suppose that vectors u =




u1
u2
u3


 and v =




v1
v2
v3


 are given.

(a) Write down an expression for the scalar product u ·v (in terms of the coordinates of u
and v). [3]

(b) What does it mean to say that two vectors are orthogonal? [3]

(c) Show that if a vector is orthogonal to all vectors, then it must be the zero vector. [4]

(d) How is the vector product u×v defined (in terms of the coordinates of u and v)? [3]

(e) Show that u×v is orthogonal to u. [3]

(f) Show that if u has the property that u×v = 0 for all vectors v, then necessarily u = 0. [4]
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Question 3. [20 marks] Let Π1 be the x-y plane (i.e. with equation z = 0), let Π2 be the x-z
plane (i.e. with equation y = 0), let Π3 be the y-z plane (i.e. with equation x = 0), and let Π4

be the plane with equation x+ y+ z = 1. Let Q be the point with position vector q =



−3
2
1


.

(a) Determine the distance between Q and Π1. [2]

(b) Determine the distance between Q and Π4. [3]

(c) Determine the coordinates of the point on Π4 that is closest to Q. [3]

(d) If A denotes the point in the intersection Π1 ∩Π2 ∩Π4, and B denotes the point in the
intersection Π1 ∩Π3 ∩Π4, determine the coordinates of the mid-point C of A and B. [3]

(e) If l denotes the line through the points C (from part (d) above) and Q, then determine
the coordinates of the point in the intersection l ∩Π3. [4]

(f) Determine the coordinates of a point which is equidistant from the four planes Π1, Π2,
Π3, Π4 (i.e. the point has the same distance from each of these planes). [5]

Question 4. [20 marks] Consider the linear system

x1 − 2x2 + x3 − x4 = 0
2x1 − 3x2 + 4x3 − 3x4 = 0
−x1 + x2 − 3x3 + 2x4 = 0 .

(a) Write down the augmented matrix of the system. [3]

(b) Bring the augmented matrix to reduced row echelon form, indicating the elementary
row operations used at each step. [4]

(c) Identify the leading and the free variables, and write down the solution set of the
system. [4]

(d) Let l1, l2 and l3 be lines in 3-space, such that l1 passes through (1,4,−3) in the direction


1
2
−1


, l2 passes through (1,3,−2) in the direction




2
3
−1


, and l3 passes through

(2,6,−4) in the direction




2
3
−1


.

Write down parametric equations for each of these three lines. [3]

(e) For the lines l1, l2, l3 as in part (d) above, determine the intersection l1 ∩ l2 of l1 and l2,
the intersection l1 ∩ l3 of l1 and l3, and the intersection l2 ∩ l3 of l2 and l3. [6]
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Question 5. [20 marks] Let

A =

�
1 3
−2 0

�
, B =




0 1
1 0
2 0
0 −1


 , C =




2 0 0 3
9 0 1 8
−8 2 4 5
3 0 0 5


 .

(a) For each of the products A2, AB, BA, B2, BC, CB, state whether or not it exists; if it
exists then evaluate it. [6]

(b) Explain what it means for a matrix M to be invertible, and what is meant by the inverse
of M. [4]

(c) Calculate det(C) and decide whether C is invertible or not. [4]

(d) Using part (c) above, evaluate det(C6) and det(3C). In each case, briefly explain which
property of determinants you are using. [4]

(e) Find det(D), where D is the matrix obtained from C by subtracting 13 times column 1
from column 4. Briefly explain which property of determinants you are using. [2]

End of Paper.
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