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Question 1 [20 marks].
Let

X = {1, 3, 4, 6, 9}, Y = {2, 3, 5, 8, 9}.

Write down each of the following sets. [No justification is required.]

(a) X ∪ Y . [2]

(b) X 4 Y . [3]

(c) {x ∈ X : x + 2 /∈ X}. [3]

(d) {y + 2 : y ∈ Y and y − 2 ∈ X}. [3]

Write down the supremum of each of the following sets. [No justification is required.]

(e)
{

x2 : −2 6 x 6 1
}

. [3]

(f)
{

n
n + 1

: n ∈ N
}

. [3]

(g) {sin(x) : x ∈ Q}. [3]

Question 2 [22 marks]. Suppose A and B are sets.

(a) Define precisely what it means for a function f : A→ B to be injective. [3]

(b) Define precisely what it means for a function f : A→ B to be surjective. [3]

Determine whether each of the following functions is injective. Justify your answers.

(c) f : Z→ Z defined by f (n) = 20n + 22. [4]

(d) f : Z→ Z defined by f (n) = n(n + 1). [4]

(e) f : P(Q)→ P(Q) defined by f (A) = A ∪ {1, 2, 3}. [4]

(f) f : N× N→ Z× Z defined by f (m, n) = (m2 + n2, m2 − n2). [4]

© Queen Mary University of London (2023)



MTH4113 / MTH4213 (2023) Page 3

Question 3 [20 marks].

(a) Suppose P, Q and R are statements. Complete the following truth table for the statement
“(P ⇒ Q) and (Q ⇒ (not R))”.

P Q R (P ⇒ Q) and (Q ⇒ (not R))
T T T F
T T F ?
T F T ?
T F F F
F T T F
F T F ?
F F T ?
F F F T

[Don’t copy the whole table – just write the four missing entries in order from top to bottom in
your answer booklet. You don’t need to show any working.] [4]

(b) Suppose x , y and z are real numbers. Write down the contrapositive of the following
implication.

If x2 > y2, then there is a real number w such that either x < w or w < z. [3]

(c) Define a sequence a1, a2, a3, . . . of integers by

a1 = 0, an = 4an−1 + 12 for n > 2.

Prove by induction that an = 4n − 4 for every n ∈ N. [8]

(d) The following “theorem” is untrue. Explain where the mistake is in the proof. Write no more
than four sentences.

Theorem. Suppose x is a real number satisfying

(x − 2)3 + 3(x − 2)2 + 2x = 4.

Then x = 0 or 1.

Proof. Let y = x − 2. Then the given equation becomes y3 + 3y2 + 2y + 4 = 4. Subtracting 4
from both sides and dividing through by y then gives y2 + 3y + 2 = 0, which factorises to give
(y + 1)(y + 2) = 0, which implies that y = −1 or y = −2. Because x = y + 2, this means that
x = 1 or x = 0. 2 [5]
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Question 4 [20 marks].

(a) Suppose d and n are natural numbers. Define what it means to say that d divides n. [3]

(b) Suppose p and q are prime numbers, and that p 6= q. How many divisors does p3× q3 have?
[No justification is required.] [3]

(c) Use Euclid’s algorithm to find gcd(198, 82). [6]

(d) Suppose a, b ∈ N and that a | b. Prove that a2 | b2. [4]

(e) Define the relation R on N by saying that aRb if a | 2b. Is R a transitive relation? Justify your
answer. [4]

Question 5 [20 marks]. Suppose A and B are sets for which

|A| = 6, |B| = 7, |A ∩ B| = 3.

(a) Write down the number of 2-element subsets of B. [3]

(b) Find |A ∪ B|. Justify your answer briefly. [3]

(c) Let D = {C ∈ P(A) : |C ∩ B| = 1}. Find |D|. Justify your answer, using any results you need
from lectures. [4]

(d) Let z be the complex number 1 + 3i. Find the following. [You do not need to show your
working, but doing so may help you to gain marks if you make arithmetic errors.]

(i) z2. [3]

(ii) |z|2. [3]

(iii) A complex number w such that z − w and zw are both real numbers. [4]

End of Paper.
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