MTH4113 / MTH4213 - NUMBERS, SETS AND FUNCTIONS - 2021/22
$\boldsymbol{\pi} \boldsymbol{\sim}$ MTH4113/MTH4213-Numbers, Sets and Functions - 2021/22 > The exam > Semester A final assessment > Preview

SEMESTER A FINAL ASSESSMENT

This handwritten exam is available for a period of 24 hours. Upon accessing the assessment, you will have three hours in which to complete and submit it. You may log out and in again during that time, but the countdown timer will not stop. If your attempt is still in progress at the end of your three hours (or at the 24 -hour deadline if earlier), any file you have uploaded will be automatically submitted.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

Please read the following message
I understand that it is important that the attempt I am about to make is all my own work. I understand what constitutes plagiarism or cheating, and I will not undertake such activities.
\square I have read and agree to the above statement.

Start attempt Cancel
42018 exam paper
? Help\& \& Jump to...
Semester A final assessment (special version for last
year's students) (hidden)

STUDENT LIFE	HELP \& SUPPORT	LIBRARY	QMPLUS ARCHIVE		
> Student email	> Raise a support ticket	> Library Landing Page	> Archive		
> My QMUL	> QMplus for students	> Library Website	> 2020-21	© Queen Mary University of London	
> Queen Mary Students'	> Browse our help guides	> Find it! Use it! Reference	> 2019-20	Site policies and guidelines \|Accessibility toolbar	Manual login
Union	> Convert your file format	it!	> 2018-19		
> Student Enquiry Centre	Book a learning	> Library Search	> 2017-18		
> Careers	technologist	> Subject guides	> 2016-17		
> Skills Review	> Book a recording booth	> Cite Them Right			
		> Academic Skills			

During our at risk period of 9-11pm on Tuesday 14th December we will be making some small updates to QMplus. The service may be unavailable for short periods during this time.

* Assignments submitted via Turnitin

There is currently an issue with assignments being submitted via Turnitin and it is currently being investigated. We apologise for any inconvenience this has caused.

MTH4113 / MTH4213 - NUMBERS, SETS AND FUNCTIONS - 2021/22

YOU CAN PREVIEW THIS QUIZ, BUT IF THIS WERE A REAL ATTEMPT, YOU WOULD BE BLOCKED BECAUSE:
This quiz is not currently available

QUESTION 1

Suppose P, Q and R are statements. Complete the truth table for the statement $(P$ or $Q) \Rightarrow(P$ and (not $R)$).

P	Q	R	$(P$ or $Q)=$
true	true	true	$\stackrel{\rightharpoonup}{*}$
true	true	false	-
true	false	true	$\hat{*}$
true	false	false	$\stackrel{\rightharpoonup}{*}$
false	true	true	$\stackrel{\rightharpoonup}{*}$
false	true	false	-
false	false	true	$\stackrel{\rightharpoonup}{*}$
false	false	false	$\stackrel{\rightharpoonup}{*}$

QUESTION 2

Suppose A, B and C are finite sets of real numbers.
Decide whether each of the following is a set, a number, a statement or meaningless.
$|A|+|C|$
$A \cup(B \cap C)$
$B=\{n \in \mathbb{N}: n+1 \in A\}$
$A \cap B$ is disjoint
$((A \cup B) \cup C) \cup A$

QUESTION 3

```
True or false?
25 is a factor of 5 .
```

$4 \mid 0 . \quad$ ज
If $a, b, c \in \mathbb{Z}$ and $a \mid b$ and $b \mid c$, then $c \mid a$. $\quad \stackrel{\rightharpoonup}{*}$
If $a \in \mathbb{Z}$ and $6 \nmid a$, then $3 \nmid a$. $\stackrel{\rightharpoonup}{*}$
If $a, b \in \mathbb{N}$, then $\operatorname{lcm}\left(a^{2}, b^{2}\right)=\operatorname{lcm}(a, b)^{2} . \quad \square$

During our at risk period of 9－11pm on Tuesday 14th December we will be making some small updates to QMplus．The service may be unavailable for short periods during this time．
（ Assignments submitted via Turnitin
There is currently an issue with assignments being submitted via Turnitin and it is currently being investigated．We apologise for any inconvenience this has caused．

MTH4113／MTH4213－NUMBERS，SETS AND FUNCTIONS－2021／22

$\boldsymbol{\Lambda} \boldsymbol{\sim} \underline{\text { MTH4113／MTH4213－Numbers，Sets and Functions－2021／22 }>\text { The exam }>\text { Semester A final assessment }>\text { Preview }}$

YOU CAN PREVIEW THIS QUIZ，BUT IF THIS WERE A REAL ATTEMPT，YOU WOULD BE BLOCKED BECAUSE：
This quiz is not currently available

QUESTION 4

Let A and B be finite sets satisfying $|A|=6,|B|=7$ and $|A \cap B|=2$ ．
Calculate the following：
$\binom{|A|}{3}=$
$|A \cup B|=$
The number of non－empty subsets of B is
$\mid\{S: S \subseteq A,|S|=3$ and $S \cap B=\emptyset\} \mid=$
$\max \{|S|: S \subseteq A \cup B,|S \cap A|$ is even and $|S \cap B|$ is even $\}=$

QUESTION 5

Decide whether each of the following functions is injective and／or surjective．
$f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=2 n$.
Of is injective but not surjective
Of is surjective but not injective
f is both injective and surjective
f is neither injective nor surjective．
$g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ defined by $f(m, n)=\left(m^{2}, m+n\right)$.
Og is injective but not surjective
$\bigcirc g$ is surjective but not injective
g is both injective and surjective
g is neither injective nor surjective．
$h: \mathbb{N} \rightarrow \mathbb{N}$ defined by
$h(n)=$ the number of digits of n^{2} ．
$O h$ is injective but not surjective
Oh is surjective but not injective
O h is both injective and surjective
O h is neither injective nor surjective．

QUESTION 6

Find the supremum of each of the following sets．（If the supremum is infinite，enter the word＂infinity＂．If it is a real number，round it to 1 decimal place．）
$\{4,1,2,3\}$
$\left\{(x-1)^{2}: x \in \mathbb{R}, 0 \leqslant x<2\right\}$
$\left\{\frac{n^{2}}{4}: n \in \mathbb{Z}\right\}$
$\left\{\frac{n+1}{n}: n \in \mathbb{N}\right\}$

A．OMplus Hub

MTH4113 / MTH4213 - NUMBERS, SETS AND FUNCTIONS - 2021/22

$\boldsymbol{\pi} \boldsymbol{>}$ MTH4113/MTH4213-Numbers, Sets and Functions-2021/22 > The exam > Semester A final assessment > Preview

QUESTION 7

Use Euclid's algorithm to find the greatest common divisor of 52 and 80 . Hence find the lowest common multiple of 52 and 80.
Upload a PDF of your solution. Show your working clearly as well as giving the answer.

Maximum file size: Unlimited, maximum number of files: 1

\square

\#

- Files Drag and drop files here or click to upload

Accepted file types

PDF document .pdf

QUESTION 8

Give a proof by induction of the following statement.
If n is a positive integer, then
$\sum_{a=1}^{n}(3 a+2)=\frac{n(3 n+7)}{2}$.
(Upload your written proof in PDF format.)
Maximum file size: Unlimited, maximum number of files: 1

$$
\square
$$

- Files

Drag and drop files here or click to upload
Accepted file types
PDF document.pdf

QUESTION 9

Here＇s an incorrect theorem with an incorrect proof．

Theorem：There is no rational number x such that $1<x<2$ ．
Proof：We use proof by contradiction．So suppose there are rational numbers between 1 and 2 ，and let x be the smallest one．Because x is rational，we can write $x=\frac{a}{b}$ where a and b are integers． Now let $y=\frac{x+1}{2}$ ．Then $y=\frac{a+b}{2 b}$ ，so y is rational．
The assumption that $x>1$ gives $x+1>2$ ，which implies that $y>1$ ．The assumption that $x>1$ also gives $2 x>x+1$ ，which implies that $y<x$ ．
But now y is a rational number between 1 and 2 which is smaller than x ．This contradicts the assumption that x was the smallest one．So the theorem is true using proof by comntradiction．\square ．

Explain in a few sentences what＇s wrong with the proof．（You can either type your answer in the box or upload a scan of your written answer as a PDF．）

