Main Examination period 2019

MTH4113, MTH4213: Numbers, Sets and Functions

Duration: 2 hours

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator.

You should attempt ALL questions. Marks available are shown next to the questions.

Calculators are not permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Complete all rough work in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any unauthorised notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately.

It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms, it will be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

Exam papers must not be removed from the examination room.

Examiners: R. Johnson and B. Jackson

In this exam $\mathbb{N}=\{1,2,3,4, \ldots\}$.

Question 1. Let

$$
A=\{1,3,4\} ; \quad B=\{1,2,5\} ; \quad C=\{1,3,5\} .
$$

For each of the following expressions, state whether it is a set, a number, or a statement. For those expressions which are statements, state whether they are true or false (giving a reason). For those expressions which are sets or numbers, evaluate them (showing your working).
(a) $A \cup B$
(b) $A \subseteq(B \cup C)$
(c) $|A| \in A$
(d) $|A \cap B| /|A \cup B|$
(e) $|A \cup B|=|A|+|C|-|A \cap B|$

Question 2.

Suppose that $P(x)$ and $Q(x)$ are mathematical statements about some object x, and X is some set.
(a) Write down a roadmap (as in lectures, I mean by this an outline of the structure a proof could have including the starting point and conclusion but omitting the details) for proving the following statement is true.

$$
\text { For all } x \in X, P(x) \Rightarrow Q(x) \text {. }
$$

Let S be the statement:
For all $x, y \in \mathbb{R}$, if $x+y=0$ then $x y \leq 0$.
(b) Decide whether the statement S is true or false, giving a proof or counterexample as appropriate.
(c) Write down the statement obtained by replacing the implication in S by its converse. Decide whether this new statement is true or false, giving a proof or counterexample as appropriate.
(d) Write down the statement obtained by replacing the implication in S by its contrapositive. Decide whether this new statement is true or false, giving a proof or counterexample as appropriate.

Question 3. Let $f: \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$ be the function defined by

$$
f(n)=\{n, n+1, \ldots, 2 n\} .
$$

(a) Find $f(2)$ and $f(3)$.
(b) Decide whether each of the following statements is true or false giving a brief reason for each answer.
(i) For all $n \in \mathbb{N}$, we have $|f(n)|=n+1$.
(ii) For all $i, j \in \mathbb{N}$, we have $f(i) \cap f(j) \neq \emptyset$.
(iii) The range of f is a finite subset of \mathbb{N}.
(iv) Every element of the range of f is a finite subset of \mathbb{N}.

Question 4.

(a) Explain what is meant by the complex plane and how to represent a complex number $a+b \mathrm{i}$ on it.
(b) Let z be the complex number $7-3$ i. Find:
(i) z^{2}
(ii) $|z|$
(iii) The complex number corresponding to the image of z under reflection in the real axis of the complex plane.
(iv) A complex number y such that $z+y$ is a negative real number.
(v) A complex number w such that $z w$ is a negative real number.

Question 5.

(a) Define what it means for a to divide n (written $a \mid n$) where a and n are integers. [4]
(b) Prove that for all integers a and n, if $a \mid n$ then $a^{2} \mid n^{2}$.
(c) Identify the mistake in the following false proof that 7 divides $2^{3 n}-1$ for all $n \in \mathbb{N}$.
We have that $2^{3 n}=8^{n}$ and so $2^{3 n}$ is a multiple of 8 . It follows that $2^{3 n}-1$ is a multiple of $8-1$. Hence $2^{3 n}-1$ is a multiple of 7 .
(d) Use induction to give a correct proof that 7 divides $2^{3 n}-1$ for all $n \in \mathbb{N}$.

End of Paper.

