I Tomasic Assignment exam21 due 01/30/2023 at 05:42am GMT

MTH5112-MTH5212-2022
8. (5 points) local/Library/Rochester/setLinearAlgebra16DeterminantOfTransf/ur_la_16_2.pg

Find the determinant of the linear transformation $T: P_{2} \rightarrow P_{2}$ given by

$$
T(f)=-3 f-5 f^{\prime}
$$

where P_{2} denotes the vector space of polynomials of degree up to 2 .
Hint: The determinant of T is the determinant of the matrix associated to T with respect to some basis of P_{2}.
$\operatorname{det}(T)=$ \qquad

1. ($\mathbf{1 0}$ points) local/setSemester_A_final_assessment_2021-22/multi1.pg

Are the following statements true or false?
? 1. If a linear system has four equations and seven variables, then it must have infinitely many solutions.
? 2. The linear system $A \mathbf{x}=\mathbf{b}$ will have a solution for all \mathbf{b} in \mathbb{R}^{n} as long as the columns of the matrix A span \mathbb{R}^{n}
? 3. Every linear system with free variables has infinitely many solutions.
? 4. If A and B are square matrices satisfying $\operatorname{det}(A)=0$ and $\operatorname{det}(B)=0$, then $A+B$ cannot be invertible.
? 5. If a linear system has the same number of equations and variables, then it must have a unique solution.
6. (5 points) local/Library/NAU/setLinearAlgebra/UpperMatrixBasisTrans2.pg

Consider the ordered bases $B=\left(\left[\begin{array}{cc}2 & -1 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}1 & 1 \\ 0 & 2\end{array}\right],\left[\begin{array}{cc}-2 & 3 \\ 0 & 3\end{array}\right]\right)$ and $C=\left(\left[\begin{array}{cc}1 & -3 \\ 0 & 4\end{array}\right],\left[\begin{array}{cc}3 & 3 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}3 & 4 \\ 0 & 0\end{array}\right]\right)$ for the vector space V of upper triangular 2×2 matrices.
a. Find the transition matrix from C to B.
$P_{C, B}=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]$
b. Find the coordinates of a matrix M in the ordered basis B if the coordinate vector of M in C is $[M]_{C}=$ $\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$.
$[M]_{B}=\left[\begin{array}{l}- \\ -\end{array}\right]$
c. Find M.
$M=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$
4. (5 points) local/Library/TCNJ/TCNJ_LinearIndependence/problem8.pg

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three linearly independent vectors in a vector space. Determine a value of k,
$k=\ldots$, so that the set $S=\{\mathbf{u}-2 \mathbf{v}, \mathbf{v}-4 \mathbf{w}, \mathbf{w}-k \mathbf{u}\}$ is linearly dependent.
13. (5 points) local/Library/Rochester/setLinearAlgebra17DotProductRn/ur_la_21.pg

Among all unit vectors $\mathbf{u}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ in \mathbb{R}^{3}, find the one for which the sum $x+9 y+10 z$ is minimal.
Hint: use the Cauchy-Schwarz inequality. If entering the answer as decimal numbers, make sure they are correct to four decimal places. Recall that square roots such as $\sqrt{17}$ can be typeset as sqrt(17).
$\mathbf{u}=\left[\begin{array}{l}- \\ -\end{array}\right]$
3. (10 points) local/setSemester_A_final_assessment_2021-22/span.pg

Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ be (non-zero) vectors and suppose that $\mathbf{z}=-4 \mathbf{x}-4 \mathbf{y}$ and $\mathbf{w}=-20 \mathbf{x}-20 \mathbf{y}-4 \mathbf{z}$.
Are the following statements true or false?
? 1. $\operatorname{Span}(\mathbf{x}, \mathbf{z})=\operatorname{Span}(\mathbf{x}, \mathbf{y})$
?2. $\operatorname{Span}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\operatorname{Span}(\mathbf{w}, \mathbf{z})$
?3. $\operatorname{Span}(\mathbf{w}, \mathbf{z})=\operatorname{Span}(\mathbf{w}, \mathbf{x})$
?4. $\operatorname{Span}(\mathbf{w}, \mathbf{x}, \mathbf{y})=\operatorname{Span}(\mathbf{w}, \mathbf{y})$
? 5. $\operatorname{Span}(\mathbf{y}, \mathbf{z})=\operatorname{Span}(\mathbf{w}, \mathbf{x})$
11. (7 points) local/Library/Rochester/setLinearAlgebra12Diagonalization/ur_la_12_1.pg

Let

$$
M=\left[\begin{array}{cc}
12 & -10 \\
5 & -3
\end{array}\right] .
$$

Find formulas for the entries of M^{n}, where n is a positive integer.
Hint: a formula such as $5 \cdot(2.3)^{n}+7 \cdot(3.5)^{n}$ is typeset as $5^{*}(2.3)^{n}+7 *(3.5)^{n}$.

$$
M^{n}=\left[\begin{array}{ll}
\square & - \\
- & -
\end{array}\right]
$$

7. (5 points) Library/NAU/setLinearAlgebra/shiftedSpace2.pg

Let $V=\mathbb{R}^{2}$. For $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in V$ and $a \in \mathbb{R}$ define vector addition by $\left(u_{1}, u_{2}\right) \boxplus\left(v_{1}, v_{2}\right):=\left(u_{1}+v_{1}+3, u_{2}+v_{2}-1\right)$ and scalar multiplication by $a \backsim\left(u_{1}, u_{2}\right):=\left(a u_{1}+3 a-3, a u_{2}-a+1\right)$. It can be shown that (V, \boxplus, Ψ) is a vector space over the scalar field \mathbb{R}. Find the following:
the sum:
$(9,0) \boxplus(4,-1)=(\square,-\quad)$
the scalar multiple:

$$
0 \backsim(9,0)=\left(_, \square\right)
$$

the zero vector:
$\underline{0}_{V}=\left(_\right.$, \quad)
the additive inverse of (x, y) :
$\boxminus(x, y)=(\square)$
2. (10 points) local/setSemester_A_final_assessment_2021-22/multi2.pg

Are the following statements true or false?
? 1. The basis for the zero vector space $\{\mathbf{0}\}$ consists of the zero vector itself.
? 2. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly independent set, then $\{\mathbf{u}+3 \mathbf{v}, \mathbf{v}-4 \mathbf{w}, \mathbf{w}\}$ is linearly independent.
? 3. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly independent set, then $\{2 \mathbf{u}+3 \mathbf{v}+4 \mathbf{w}, \mathbf{u}+3 \mathbf{v}, \mathbf{u}+4 \mathbf{w}\}$ is linearly independent.
? 4. There exist vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ such that $\mathbf{u}-\mathbf{v}, \mathbf{v}-\mathbf{w}, \mathbf{w}-\mathbf{u}$ span \mathbb{R}^{3}
?5. If S is a linearly independent set and T is a spanning set in a vector space V, then $S \cap T$ is a basis for V.
9. (8 points) local/Library/NAU/setLinearAlgebra/LinTransImage.pg

Let $V=\mathbb{R}^{2 \times 2}$ be the vector space of 2×2 matrices and let $L: V \rightarrow V$ be a linear transformation defined by

$$
\begin{gathered}
\qquad L(X)=\left[\begin{array}{cc}
-15 & -5 \\
-3 & -1
\end{array}\right] X \\
\text { a. Evaluate } L\left(\left[\begin{array}{cc}
-3 & -4 \\
4 & -4
\end{array}\right]\right)=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right]
\end{gathered}
$$

b. Find a basis for $\operatorname{ker}(L)$:
$\left[\begin{array}{ll}- & - \\ - & -\end{array}\right],\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$
c. Find a basis for $\operatorname{im}(L)$:
$\left[\begin{array}{ll}- & - \\ - & -\end{array}\right],\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$
5. (10 points) local/setSemester_A_final_assessment_2021-22/new1Problem.pg

Determine whether the given set S is a subspace of the vector space V.
? 1. $V=C^{3}(\mathbb{R})$, and S is the subset of V consisting of those functions y satisfying the differential equation $y^{\prime \prime \prime}-y^{\prime}=1$.
? 2. $V=P_{n}$, and S is the subset of P_{n} consisting of those polynomials satisfying $p(0)=0$.
? 3. $V=\mathbb{R}^{n \times n}$, and S is the subset of all matrices A satisfying $A^{T}=-A$.
? 4. $V=\mathbb{R}^{n}$, and S is the set of solutions to the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ where A is a fixed $m \times n$ matrix.
? 5 . $V=\mathbb{R}^{n \times n}$, and S is the subset of all upper triangular matrices.

Notation: P_{n} is the vector space of polynomials of degree up to n, and $C^{n}(\mathbb{R})$ is the vector space of n times continuously differentiable functions on \mathbb{R}.
12. (10 points) local/setSemester_A_final_assessment_2021-22/multi4.pg

Are the following statements true or false?
? 1. If $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}-\mathbf{v}\|^{2}$, then the vectors \mathbf{u} and \mathbf{v} are orthogonal.
? 2. If \mathbf{x} is not in a subspace W, then $\mathbf{x}-\operatorname{proj}_{W}(\mathbf{x})$ is zero.
? 3. The best approximation to \mathbf{y} by elements of a subspace W is given by the vector $\mathbf{y}-\operatorname{proj}_{W}(\mathbf{y})$.
?4. If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for W, then multiplying \mathbf{v}_{3} by a non-zero scalar c gives a new orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, c \mathbf{v}_{3}\right\}$.
? 5. If an $n \times p$ matrix U has orthonormal columns, then $U U^{T} \mathbf{x}=\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}.
10. (10 points) local/setSemester_A_final_assessment_2021-22/multi3.pg

Are the following statements true or false for a square matrix A ?
? 1. A number c is an eigenvalue of A if and only if the equation $(A-c I) \mathbf{x}=\mathbf{0}$ has a nontrivial solution \mathbf{x}.
? 2. To find the eigenvalues of A, reduce A to echelon form.
?3. If $A \mathbf{x}=\lambda \mathbf{x}$ for some vector \mathbf{x} and some scalar λ, then λ is an eigenvalue of A.
? 4. If an $n \times n$ matrix A is diagonalizable, then A has n distinct eigenvalues.
? 5. If $A \mathbf{x}=\lambda \mathbf{x}$ for some vector \mathbf{x} and some scalar λ, then \mathbf{x} is an eigenvector of A.

