8. (5 points) local/Library/Rochester/setLinearAlgebra16DeterminantOfTransf/ur_la_16_2.pg

Find the determinant of the linear transformation $T: P_2 \rightarrow P_2$ given by

$$T(f) = -3f - 5f'$$

where P_2 denotes the vector space of polynomials of degree up to 2.

Hint: The determinant of T is the determinant of the matrix associated to T with respect to some basis of P_2 .

det(T) =_____

1. (10 points) local/setSemester_A_final_assessment_2021-22/multi1.pg Are the following statements true or false?

- ? 1. If a linear system has four equations and seven variables, then it must have infinitely many solutions.
- ? 2. The linear system $A\mathbf{x} = \mathbf{b}$ will have a solution for all \mathbf{b} in \mathbb{R}^n as long as the columns of the matrix A span \mathbb{R}^n
- ? 3. Every linear system with free variables has infinitely many solutions.
- ? 4. If A and B are square matrices satisfying det(A) = 0 and det(B) = 0, then A + B cannot be invertible.
- ? 5. If a linear system has the same number of equations and variables, then it must have a unique solution.

6. (5 points) local/Library/NAU/setLinearAlgebra/UpperMatrixBasisTrans2.pg Consider the ordered bases $B = \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} -2 & 3 \\ 0 & 3 \end{bmatrix}$ and $C = \begin{pmatrix} 1 & -3 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 3 & 3 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix}$) for the vector space *V* of upper triangular 2 × 2 matrices. a. Find the transition matrix from *C* to *B*.

$$P_{C,B} = \begin{vmatrix} --- & -- & -- \\ --- & -- & -- \\ --- & -- & -- \end{vmatrix}$$

b. Find the coordinates of a matrix *M* in the ordered basis *B* if the coordinate vector of *M* in *C* is $[M]_C = \begin{bmatrix} 2 \end{bmatrix}$

$$\begin{bmatrix} 3 \\ 3 \end{bmatrix}.$$

$$[M]_B = \begin{bmatrix} --- \\ --- \end{bmatrix}$$
c. Find M.
$$M = \begin{bmatrix} --- \\ --- \end{bmatrix}$$

4. (5 points) local/Library/TCNJ/TCNJ_LinearIndependence/problem8.pg

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three linearly independent vectors in a vector space. Determine a value of k,

k =___, so that the set $S = \{\mathbf{u} - 2\mathbf{v}, \mathbf{v} - 4\mathbf{w}, \mathbf{w} - k\mathbf{u}\}$ is linearly dependent.

13. (5 points) local/Library/Rochester/setLinearAlgebra17DotProductRn/ur_la_21.pg Among all unit vectors $\mathbf{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ in \mathbb{R}^3 , find the one for which the sum x + 9y + 10z is minimal.

Hint: use the Cauchy-Schwarz inequality. If entering the answer as decimal numbers, make sure they are correct to four decimal places. Recall that square roots such as $\sqrt{17}$ can be typeset as sqrt(17).

3. (10 points) local/setSemester_A_final_assessment_2021-22/span.pg

Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ be (non-zero) vectors and suppose that $\mathbf{z} = -4\mathbf{x} - 4\mathbf{y}$ and $\mathbf{w} = -20\mathbf{x} - 20\mathbf{y} - 4\mathbf{z}$. Are the following statements true or false?

- $21. \operatorname{Span}(\mathbf{x}, \mathbf{z}) = \operatorname{Span}(\mathbf{x}, \mathbf{y})$
- ? 2. $\operatorname{Span}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \operatorname{Span}(\mathbf{w}, \mathbf{z})$
- ? 3. $\operatorname{Span}(\mathbf{w}, \mathbf{z}) = \operatorname{Span}(\mathbf{w}, \mathbf{x})$
- ? 4. $\operatorname{Span}(\mathbf{w}, \mathbf{x}, \mathbf{y}) = \operatorname{Span}(\mathbf{w}, \mathbf{y})$
- ? 5. $\operatorname{Span}(\mathbf{y}, \mathbf{z}) = \operatorname{Span}(\mathbf{w}, \mathbf{x})$

11. (7 points) local/Library/Rochester/setLinearAlgebra12Diagonalization/ur_la_12_1.pg Let

$$M = \left[\begin{array}{rrr} 12 & -10 \\ 5 & -3 \end{array} \right].$$

Find formulas for the entries of M^n , where *n* is a positive integer.

Hint: a formula such as $5 \cdot (2.3)^n + 7 \cdot (3.5)^n$ is typeset as $5^* (2.3)^n + 7 \cdot (3.5)^n$.

7. (5 points) Library/NAU/setLinearAlgebra/shiftedSpace2.pg

Let $V = \mathbb{R}^2$. For $(u_1, u_2), (v_1, v_2) \in V$ and $a \in \mathbb{R}$ define vector addition by

 $(u_1, u_2) \boxplus (v_1, v_2) := (u_1 + v_1 + 3, u_2 + v_2 - 1)$ and scalar multiplication by

 $a \boxdot (u_1, u_2) := (au_1 + 3a - 3, au_2 - a + 1)$. It can be shown that (V, \boxplus, \boxdot) is a vector space over the scalar field \mathbb{R} . Find the following:

the sum:

$$(9,0) \boxplus (4,-1) = (\underline{\qquad},\underline{\qquad})$$

the scalar multiple:

 $0 \boxdot (9,0) = (\underline{\qquad},\underline{\qquad})$ the zero vector: $\underline{0}_V = (\underline{\qquad},\underline{\qquad})$ the additive inverse of (x,y): $\Box(x,y) = (\underline{\qquad},\underline{\qquad})$

2. (10 points) local/setSemester_A_final_assessment_2021-22/multi2.pg Are the following statements true or false?

- ? 1. The basis for the zero vector space $\{0\}$ consists of the zero vector itself.
- ? 2. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly independent set, then $\{\mathbf{u} + 3\mathbf{v}, \mathbf{v} 4\mathbf{w}, \mathbf{w}\}$ is linearly independent.
- ? 3. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly independent set, then $\{2\mathbf{u}+3\mathbf{v}+4\mathbf{w}, \mathbf{u}+3\mathbf{v}, \mathbf{u}+4\mathbf{w}\}$ is linearly independent.
- ? 4. There exist vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ such that $\mathbf{u} \mathbf{v}, \mathbf{v} \mathbf{w}, \mathbf{w} \mathbf{u}$ span \mathbb{R}^3
- ? 5. If S is a linearly independent set and T is a spanning set in a vector space V, then $S \cap T$ is a basis for V.

9. (8 points) local/Library/NAU/setLinearAlgebra/LinTransImage.pg

Let $V = \mathbb{R}^{2 \times 2}$ be the vector space of 2×2 matrices and let $L: V \to V$ be a linear transformation defined by

$$L(X) = \begin{bmatrix} -15 & -5 \\ -3 & -1 \end{bmatrix} X.$$

a. Evaluate $L(\begin{bmatrix} -3 & -4 \\ 4 & -4 \end{bmatrix}) = \begin{bmatrix} ---- \\ --- \end{bmatrix}$
b. Find a basis for ker(L):
$$\begin{bmatrix} ---- \\ --- \end{bmatrix}, \begin{bmatrix} ---- \\ --- \end{bmatrix}$$

c. Find a basis for im(L):
$$\begin{bmatrix} ---- \\ --- \end{bmatrix}, \begin{bmatrix} ---- \\ --- \end{bmatrix}$$

5. (10 points) local/setSemester_A_final_assessment_2021-22/new1Problem.pg

Determine whether the given set S is a subspace of the vector space V.

- ? 1. $V = C^3(\mathbb{R})$, and *S* is the subset of *V* consisting of those functions *y* satisfying the differential equation y''' y' = 1.
- ? 2. $V = P_n$, and S is the subset of P_n consisting of those polynomials satisfying p(0) = 0.
- $\overline{?}$ 3. $V = \mathbb{R}^{n \times n}$, and S is the subset of all matrices A satisfying $A^T = -A$.
- ? 4. $V = \mathbb{R}^n$, and S is the set of solutions to the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ where A is a fixed $m \times n$ matrix.
- ? 5. $V = \mathbb{R}^{n \times n}$, and S is the subset of all upper triangular matrices.

Notation: P_n is the vector space of polynomials of degree up to n, and $C^n(\mathbb{R})$ is the vector space of n times continuously differentiable functions on \mathbb{R} .

12. (10 points) local/setSemester_A_final_assessment_2021-22/multi4.pg Are the following statements true or false?

- ? 1. If $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} \mathbf{v}\|^2$, then the vectors \mathbf{u} and \mathbf{v} are orthogonal.
- ? 2. If **x** is not in a subspace *W*, then $\mathbf{x} \text{proj}_W(\mathbf{x})$ is zero.
- ? 3. The best approximation to y by elements of a subspace W is given by the vector $\mathbf{y} \text{proj}_W(\mathbf{y})$.

- ? 4. If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for *W*, then multiplying \mathbf{v}_3 by a non-zero scalar *c* gives a new orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, c\mathbf{v}_3\}$.
- ? 5. If an $n \times p$ matrix U has orthonormal columns, then $UU^T \mathbf{x} = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n .

10. (10 points) local/setSemester_A_final_assessment_2021-22/multi3.pg Are the following statements true or false for a square matrix A?

- [?]1. A number c is an eigenvalue of A if and only if the equation $(A cI)\mathbf{x} = \mathbf{0}$ has a nontrivial solution **x**.
- ? 2. To find the eigenvalues of *A*, reduce *A* to echelon form.
- ? 3. If $A\mathbf{x} = \lambda \mathbf{x}$ for some vector \mathbf{x} and some scalar λ , then λ is an eigenvalue of A.
- ? 4. If an $n \times n$ matrix A is diagonalizable, then A has n distinct eigenvalues.
- ? 5. If $A\mathbf{x} = \lambda \mathbf{x}$ for some vector \mathbf{x} and some scalar λ , then \mathbf{x} is an eigenvector of A.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America