Ivan Tomasic
 MTH5112-MTH5212 Assignment Semester_A_final_assessment_2020-21 due 01/19/2021 at 10:00am GMT

1. (10 points) setprobica/multichoice1.pg

Are the following statements true or false?
? 1. If a linear system has four equations and seven variables, then it must have infinitely many solutions.
? 2. The linear system $A \mathbf{x}=\mathbf{b}$ will have a solution for all \mathbf{b} in \mathbb{R}^{n} as long as the columns of the matrix A do not include the zero column.
? 3. Every linear system with free variables has infinitely many solutions.
? 4. The linear system $A \mathbf{x}=\mathbf{b}$ will have a solution for all \mathbf{b} in \mathbb{R}^{n} as long as the columns of the matrix A span \mathbb{R}^{n}
? 5. Different sequences of row operations can lead to different echelon forms for the same matrix.
2. (5 points) local/Library/TCNJ/TCNJ_RowReduction/problem3.pg

Determine all values of h and k for which the linear system

$$
\begin{array}{r}
-3 x-3 y-3 z=4 \\
-8 x-9 y-8 z=7 \\
-35 x-39 y+h z=k
\end{array}
$$

has no solution.

The linear system has no solution if $k \neq$ \qquad and $h=$ \qquad
3. (10 points) setprobica/multichoice.pg

Are the following statements true or false?
? 1. If all the diagonal entries of a square matrix are zero, the matrix is not invertible.
? 2. If A and B are square matrices satisfying $\operatorname{det}(A)=0$ and $\operatorname{det}(B)=0$, then $A+B$ cannot be invertible.
? 3. If A is a square matrix satisfying $A^{3}=I$, then A is invertible.
? 4. If A is an invertible upper triangular matrix, then A^{-1} is lower triangular.
? 5. If A is a square matrix satisfying $A^{2}=O$ (where O is the zero matrix), then $A+I$ is invertible.
4. (6 points) Library/Rochester/setLinearAlgebra6Determinants/ur_la_6_20.pg

If

$$
\operatorname{det}\left[\begin{array}{lll}
a & 1 & d \\
b & 1 & e \\
c & 1 & f
\end{array}\right]=2, \quad \text { and } \quad \operatorname{det}\left[\begin{array}{lll}
a & 1 & d \\
b & 2 & e \\
c & 3 & f
\end{array}\right]=-5
$$

then
$\operatorname{det}\left[\begin{array}{ccc}a & 2 & d \\ b & 2 & e \\ c & 2 & f\end{array}\right]=_$and
$\operatorname{det}\left[\begin{array}{lll}a & 2 & d \\ b & 3 & e \\ c & 4 & f\end{array}\right]=$ \qquad
5. (5 points) local/Library/Hope/Multi1/03-02-Vector-subspaces/Subspaces_nonempty_04.pg

Let H be the set of all points in the first quadrant in the plane $V=\mathbb{R}^{2}$. That is, $H=\{(x, y) \mid x \geq$ $0, y \geq 0\}$.
(1) Is H nonempty?

- choose
- H is empty
- H is nonempty
(2) Is H closed under addition? If it is, enter CLOSED . If it is not, enter two vectors in H whose sum is not in H, using a comma separated list and syntax such as $\langle 1,2\rangle,\langle 3,4\rangle$.
(3) Is H closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in \mathbb{R} and a vector in H whose product is not in H, using a comma separated list and syntax such as $2,<3,4>$.
(4) Is H a subspace of the vector space V ? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3.
- choose
- H is a subspace of V
- H is not a subspace of V

6. (10 points) setSemester_A_final_assessment_2020-21/proba.pg

Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ be (non-zero) vectors and suppose that $\mathbf{z}=2 \mathbf{x}-3 \mathbf{y}$ and $\mathbf{w}=4 \mathbf{x}-6 \mathbf{y}-1 \mathbf{z}$.
Are the following statements true or false?
? 1. $\operatorname{Span}(\mathbf{w}, \mathbf{z})=\operatorname{Span}(\mathbf{w}, \mathbf{y})$
?2. $\operatorname{Span}(\mathbf{x}, \mathbf{y})=\operatorname{Span}(\mathbf{w}, \mathbf{z})$
?3. $\operatorname{Span}(\mathbf{x}, \mathbf{y})=\operatorname{Span}(\mathbf{w}, \mathbf{x}, \mathbf{y})$
?4. $\operatorname{Span}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\operatorname{Span}(\mathbf{w}, \mathbf{y}, \mathbf{z})$
?5. $\operatorname{Span}(\mathbf{w}, \mathbf{x}, \mathbf{z})=\operatorname{Span}(\mathbf{w}, \mathbf{x})$
7. (10 points) Library/TCNJ/TCNJ_LinearIndependence/problem11.pg

Determine which of the following sets of vectors are linearly independent and which are linearly dependent.

8. (6 points) local/Library/Rochester/setLinearAlgebra14Transf0fRn/ur_la_14_17.pg The cross product of two vectors in \mathbb{R}^{3} is defined by

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]_{3}=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right] .
$$

Let $\mathbf{v}=\left[\begin{array}{c}2 \\ 2 \\ -2\end{array}\right]$.
Find the matrix A of the linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $L(\mathbf{x})=\mathbf{v} \times \mathbf{x}$.
$A=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]$
9. (10 points) setprobica/multichoice2.pg

Are the following statements true or false for a square matrix A ?
? 1. The eigenvalues of a matrix are on its main diagonal.
? 2. An $n \times n$ matrix A is diagonalizable if A has n distinct eigenvectors.
?3. If $A \mathbf{x}=\lambda \mathbf{x}$ for some vector \mathbf{x} and some scalar λ, then \mathbf{x} is an eigenvector of A.
?4. Finding an eigenvector of A might be difficult, but checking whether a given vector is in fact an eigenvector is easy.
? 5. If A is invertible, then A is diagonalizable.
10. (6 points) Library/Rochester/setLinearAlgebra11Eigenvalues/ur_la_11_24a.pg

The matrix

$$
A=\left[\begin{array}{cccc}
-1 & 1 & 1 & 3 \\
7 & -1 & 5 & -3 \\
4 & -1 & 2 & -3 \\
-4 & 1 & 1 & 6
\end{array}\right]
$$

has two distinct real eigenvalues $\lambda_{1}<\lambda_{2}$. Find the eigenvalues and a basis for each eigenspace.
The smaller eigenvalue λ_{1} is \qquad and a basis for its associated eigenspace is

$$
\left\{\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]\right\}
$$

The larger eigenvalue λ_{2} is \qquad and a basis for its associated eigenspace is

$$
\left\{\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right],\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]\right\}
$$

11. (6 points) local/Library/Hope/Multi1/05-04-Diagonalization/DiagR_05.pg

Suppose

$$
A=\left[\begin{array}{cc}
-27 & -15 \\
50 & 28
\end{array}\right] .
$$

Find an invertible matrix P and a diagonal matrix D so that $A=P D P^{-1}$.
Use your answer to find an expression for A^{6} in terms of P, a power of D, and P^{-1} in that order.
$A^{6}=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$.
12. (10 points) setprobica/multichoice3.pg

Are the following statements true or false?
? 1. If $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}-\mathbf{v}\|^{2}$, then the vectors \mathbf{u} and \mathbf{v} are orthogonal.
? 2. The Gram-Schmidt process produces from a linearly independent set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ an orthogonal set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ with the property that for each k, the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ span the same subspace as that spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$.
? 3. For all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, we have $\mathbf{u} \cdot \mathbf{v}=-\mathbf{v} \cdot \mathbf{u}$.
?4. For any vector $\mathbf{v} \in \mathbb{R}^{n}$, we have $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|$.
? 5. For a square matrix A, vectors in the column space of A are orthogonal to vectors in the nullspace of A.
13. (6 points) local/Library/Rochester/setLinearAlgebra180rthogonalBases/ur_la_18_9.pg Let

$$
A=\left[\begin{array}{cccc}
-3 & -1 & 0 & 1 \\
1 & 1 & 2 & -7 \\
1 & 1 & 2 & -7 \\
5 & 1 & -2 & 5
\end{array}\right]
$$

Find orthonormal bases of the nullspace of A and the column space of A. Your answers should be correct to 4 decimal places.

Orthonormal basis of the nullspace:
$\left\{\left[\begin{array}{l}\bar{\square} \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]\right\}$.
Orthonormal basis of the column space:

Generated by (c)WeBWorK, http://webwork.maa.org, Mathematical Association of America

