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Question 1 [14 marks].

(a) Let V be a vector space and v1, . . . ,vn ∈ V . When do we say that

vectors v1, . . . ,vn span V ?

(Give a precise definition.) [3]

(b) Consider vectors

v1 =

1
0
1

 ,v2 =

2
3
4

 ,v3 =

5
6
7

 and v4 =

 8
9
10

 in R3.

(i) Do vectors v1,v2,v3,v4 span R3? [5]

(ii) Do vectors v1 and v2 span R3? [3]

(iii) Are vectors v1,v2,v3,v4 linearly independent? [3]

Justify your answer in each case, and state precisely any theorems you use.

Question 2 [14 marks].

(a) Let V be a vector space and v1, . . . ,vn ∈ V . When do we say that

vectors v1, . . . ,vn are linearly independent?

(Give a precise definition.) [3]

(b) Consider vectors

v1 =


1
4
7
1

 ,v2 =


2
5
8
0

 and v3 =


3
6
9
1

 in R4.

(i) Are vectors v1,v2,v3 linearly independent? [5]

(ii) Are vectors v1 and v2 linearly independent? [3]

(iii) Do vectors v1,v2,v3 span R4? [3]

Justify your answer in each case, and state precisely any theorems you use.
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Question 3 [10 marks]. Let P2 denote the vector space of polynomials of degree at
most 2. Consider the subset

H = {p ∈ P2 : p(1) = p(0)} .

(a) Show that H is a subspace of P2. [5]

(b) Find a basis for H and determine dim(H). [5]

Question 4 [18 marks]. Let P2 denote the vector space of polynomials of degree at
most 2, and let

D : P2 → P2

be the transformation that sends a polynomial p(t) = at2 + bt + c in P2 to its derivative
p′(t) = 2at + b, that is,

D(p) = p′.

(a) Prove that D is a linear transformation. [4]

(b) Find a basis for the kernel ker(D) of the linear transformation D and compute its
nullity. [4]

(c) Find a basis for the image im(D) of the linear transformation D and compute its
rank. [4]

(d) Verify that the Rank-Nullity Theorem holds for the linear transformation D. [3]

(e) Find the matrix representation of D in the standard basis (1, t, t2) of P2. [3]

Question 5 [16 marks].

(a) Define the norm ‖u‖ of a vector u ∈ Rn. [3]

(b) When are vectors u,v ∈ Rn considered orthogonal? [3]

(c) When do we say that a set {u1, . . . ,um} of vectors in Rn is orthonormal? [4]

(d) Prove the following statement.

If the set {u,v} is orthonormal, then the vectors u,v are linearly
independent.

[6]
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Question 6 [20 marks]. Let

A =

−1 −2 2
4 3 −4
0 −2 1

 .

(a) Show that v =

 1
−1
1

 is an eigenvector of A and find the corresponding

eigenvalue. [4]

(b) Find the characteristic polynomial of A and factorise it. Hint: the answer to (a)
may be useful. [5]

(c) Determine all eigenvalues of A and find bases for the corresponding eigenspaces. [7]

(d) Find an invertible matrix P and a diagonal matrix D such that P−1AP = D. [4]

Question 7 [8 marks]. Consider the least squares problem Ax = b, where

A =


1 1
1 2
1 3
1 4

 and b =


1
3
3
5

 .

(a) Write down the corresponding normal equations. [4]

(b) Determine the set of least squares solutions to the problem. [4]

End of Paper.
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