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Question 1. [16 marks]

(a) Consider the system of linear equations

x1 + x2 − x3 + x4 = 6
−x1 − x3 = −1
2x1 + 2x2 − 2x3 + 3x4 = 14

(i) Write down the augmented matrix of the system. [2]

(ii) Put the augmented matrix into reduced row echelon form (RREF),
indicating which elementary row operation you have used at each step. [5]

(iii) State which of the variables are leading variables and which are free
variables, and write down the solution set of the system. [3]

(b) Use the Gauss–Jordan algorithm to find the inverse of the matrix

A =

1 2 −2
0 −3 0
0 0 1

 ,

indicating which elementary row operation you have used at each step. [6]

Question 2. [17 marks]

(a) Suppose that A is an invertible matrix. Prove that the system of linear equations
Ax = 0 has only the trivial solution. [5]

(b) Consider the matrices

B =

(
0 1
2 4

)
and C =

−1 1
3 0
1 2

 .

(i) Compute the matrix BT − 2B. [2]

(ii) For each of the matrix products

BC and CB,

either compute the product, or explain why it is not defined. [4]

(c) Give examples of the following:

(i) a symmetric 3× 3 matrix; [3]

(ii) an upper triangular 3× 3 matrix. [3]
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Question 3. [18 marks]

(a) Consider the matrix

A =


7 −5 1 4
0 0 4 0
3 −1 2 2
0 1 −6 0

 .

(i) Compute the determinant of A. [4]

(ii) Using your answer to part (i), explain whether A is invertible or not. (Do
not attempt to compute the inverse.) [2]

(b) Suppose that B is a square matrix with det(B) = 5. Compute the following:

(i) det(B3); [2]

(ii) det(B−1); [2]

(iii) det(BT). [2]

(c) Suppose that C is a 4× 4 matrix with det(C) = 3. Compute the determinants of
the following matrices:

(i) the matrix obtained by swapping the first and second rows of C; [2]

(ii) the matrix obtained by multiplying the fourth row of C by −6; [2]

(iii) the matrix obtained by subtracting the third row of C from the first row. [2]

Question 4. [15 marks]

(a) Prove that

H =


x

y
z

 ∈ R3 : x + y + z = 0


is a subspace of R3. [5]

(b) Write down a set of five linearly independent vectors in R4, or explain why it is
impossible to do so. [4]

(c) Consider the matrix

A =


1 −1 5 2 0
0 1 −4 −2 1
0 0 0 1 6
0 0 0 −1 −6

 .

(i) Write down a basis for the row space of A, and determine the rank of A. [3]

(ii) Using your answer to part (i), determine the nullity of A. [3]
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Question 5. [16 marks] Consider the matrix

A =

1 3 0
3 1 0
0 0 1

 .

(a) Find the eigenvalues of A. [4]

(b) For each of the eigenvalues of A, find a basis for the corresponding eigenspace. [6]

(c) Using your answer to part (b), find an invertible matrix P and a diagonal matrix
D such that P−1AP = D, or explain why this is impossible. [6]

Question 6. [18 marks]

(a) Consider the vectors v1, v2, v3 ∈ R3 given by

v1 =

1
1
1

 , v2 =

 2
0
−2

 , v3 =

 1
−2
1

 .

(i) Show that B = {v1, v2, v3} is an orthogonal basis for R3. [6]

(ii) Write down the transition matrix from B to the standard basis of R3. [4]

(iii) Find the best approximation to the vector

w =

1
0
2


by vectors in the subspace H = span(v1, v2) of R3. [4]

(b) Let A ∈ Rm×n and b ∈ Rm, and suppose that the system of linear equations

Ax = b

has no solutions. What does it mean to say that a vector x ∈ Rn is a least
squares solution of such a system? [4]

End of Paper.
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