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Question 1.

(a) Let A be a 3×3 matrix with real entries such that det(A) = 5.

(i) Suppose the matrix B is obtained from A by interchanging the first two
rows and multiplying the third row by 3. Find det(B). [4]

(ii) Explain why A is invertible and show that det(A−1) =
1
5
. [4]

(iii) Find det(2AT A−1). [6]

(b) Let A =

 3 0
−1 2
1 1

 and B =

(
1 1 4 0
5 0 −1 2

)
. Consider the products AB and

(BA)T . In each case, either compute the given product, or explain why the
operation cannot be performed. [4]

Question 2. Consider the linear system

x1 − 2x2 + x3 − x4 = 0
2x1 − 3x2 + 4x3 − 3x4 = 0
−x1 + x2 − 3x3 + 2x4 = 0 .

(a) Write down the augmented matrix of the system. [2]

(b) Bring the augmented matrix to reduced row echelon form. Indicate the
elementary row operations used at each step. [4]

(c) Identify the leading and the free variables, and write down the solution set of
the system. [4]

Question 3.

(a) Give an example of 5 linearly independent vectors in R4 or explain why it is
impossible to do so. [4]

(b) Give an example of 3 vectors that span R2 or explain why it is impossible to
do so. [4]

(c) Let H =
{

A ∈ R2×2
∣∣ A is diagonal

}
.

(i) Show that H is a subspace of R2×2. [6]

(ii) Write down a basis for H and determine the dimension of H. A proof
that your answer does indeed provide a basis for H is not required. [4]
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Question 4. Let u1 =

1
2
1

, u2 =

 3
−1
−1

, u3 =

 1
−4
7

 and let B = {u1,u2,u3}.

(a) Show that B is an orthogonal basis of R3. [8]

(b) Determine the transition matrix from B to the standard basis of R3. [4]

(c) Suppose the B-coordinate vector of u ∈ R3 is

[u]B =

2
0
3

 .

Find u in standard basis. [4]

Question 5.

(a) Suppose A ∈ Rm×n. Give the definition of rank(A) and nul(A). [2]

(b) State the Rank–Nullity Theorem. [2]

(c) If the column space of a 9×4 matrix is 3-dimensional, what is the dimension
of the null space? Justify your answer. [4]

(d) Is it true that if the determinant of a 10×10 matrix A is 10, then the rank of A
is 10? Justify your answer. [4]

Question 6. Let

A =

3 0 0
0 4 1
0 2 5

 .

(a) Find the eigenvalues of A and their corresponding eigenspaces. [10]

(b) Explain why A is diagonalisable. [2]

(c) Find an invertible matrix P and a diagonal matrix D such that P−1AP = D. [4]

Question 7. Consider the least squares problem Ax = b, where

A =

 1 1
3 1
−1 −2

 , b =

2
4
7

 .

(a) Write down the corresponding normal equations. [6]

(b) Determine the set of least squares solutions to the problem. [4]

End of Paper.
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